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Experiments with long-rod penetrators of very high aspect ratios demonstrate
that these slender cylinders can fail because of severe structura integrity and
stability problems during accel eration and flight phase. In a previous paper the
authors gave some hints in order to solve that problem. If lateral accelerations
were looked at as reason for the bending of the rods a new parameter could be
defined standing for a constant stress level for penetrators of various dimen-
sions. The parameter itself is a simple combination of purely geometric main
measures of therod, i.e. diameter and length. It will be shown that the parame-
ter serves as an advantageous tool while designing long-rod penetrators; it is
also awell suited means to identify bending stresses from experimental pene-
trator profiles and to compare experiments of different scale to each other.
Stresses are calcul ated from the maximum deflection of bended rods from both
model and real-scal e experiments. Furthermore experiments at constant accele-
ration demonstrate higher stresses for penetrators with constant aspect ratios
but increasing geometric dimensions of therods.

INTRODUCTION

Therequirement of asteadily increasing perforation power and the need to defeat dif-
ferent target types have resulted in quite sophisticated kinetic-energy long-rod penetra-
tors. Because of the limited energy available and the physical parametersruling the perfo-
ration power, i.e. density and length of the projectile as well as striking velocity, these
rods show relatively high aspect ratios.

As aprotection measure against this threat a number of targets are known with thein-
tention to break these slender cylinders into pieces (e.g. active or reactive protection).
This is of course a very effective method to defeat the penetrator as these slender rods
quite often fail because of severe structural integrity and stability problems during the ac-
celeration and flight phase and even more during penetration if strained by lateral forces.
Thus it seems useful to discuss possibilities of hardening the long-rod projectile against
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thisthreat of transverse forces and to examine the consequences for the design of penetra-
torsaswell as conclusionsthat can be drawn from specific experiments.

BENDING OF LONG-ROD PENETRATORS

Aswell known, long-rod penetrators often show stability and integrity problems dur-
ing acceleration; flight phase and target interaction. M odel-scale experi-ments with sub-
calibre projectiles made of tungsten heavy metal with diameters of 6 mm and aspect ratios
of 40 (Figure 1) demonstrate these effects. As an example a flexure of the penetrator at
1.5 moff themuzzleisclearly visiblein Figure 2a (upper part); another experiment with a
strong flexurein thelater flight phaseisshown in Figure 2b.

Stability problems such as buckling, bending or bending vibrations are all the moreli-
kely asthe finenessratio of the projectileishigh [1, 2]. Thiswill possibly result in aloss
of efficiency or even fracture of the projectile. During the target interaction process—and
even more evident during the penetration of targets which exercise a transverse load on
the rod — these projectiles bear extreme loads. Two examples of such projectile-target
interactions are shown in Figure 4 with abended penetrator and broken one, respectively.

The characteristic measures usually taken to define rod penetrators are mass, length
and diameter aswell asthefinenessratio. This quantity, i.e. the L/D-quotient, isthe deter-
mining projectile shape factor and is commonly used as agroup parameter in descriptions
and diagrams. Certainly, the aspect ratio isasuitabl e reference parameter for the compari-
son of scaled and full-scale experiments or while applying scaling laws or special trans-
formation rules for penetrators with constant L/D-ratios [3], [4], [5]. But neither these
rules nor the aspect ratio give any hint on how to improve on the integrity problems
mentioned above.

As apossible solution we take alook at the penetrator stress. This has aready been
proposed in an earlier contribution [6], and we will briefly recall the main results for bet-
ter comprehension of the following. In order to get a simple but generally valid descrip-
tion, we assume a working hypothesis that considers the penetrator to be a bending rod
with a uniform transverse load. This leads to a more universally applicable insight and
also —aswewill show —to asimple transformation rule or scaling parameter for penetra-
tors of different shapes (in the sense of ‘not L/D-scaled’ rods).

Then, for the general description of abending rod it does not really matter which spe-
cial bending case welook at. We consider the bending rod to be a prismatic body of circu-
lar cross-section (Figure 5). Therod of diameter D and length L is supported at both ends
and carries a uniform transverse load. The moment thus induced results in a bending of
therod with aradiusr. The quantity € denotes the maximum deflection.

For the load condition of the bending column as depicted in Figure 5 the ruling equa-
tions are those of bending moment M = q - L2/8, moment of resistance W = |/(D/2) and
areal moment of inertial = 77- D#/64, see[6], [7].

In the case of penetrator accel eration and target interaction it isvery likely that the act-
ing bending forces are mass forces being induced by the rod proper weight, i.e. we as-
sume that the uniform transverse load is caused by lateral acceleration. The total load is
then calculated by Newton'sLaw asF = 1/ 4-D2-L-p- ag. Herein the transverse acce-
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leration ag is defined asamultiple of the normal acceleration g dueto gravity, i.e.ag=n-g.
With q = F/L theload per unit length on therod iscalculatedtobeq= 174 -D? - p - ag-

Now, from the general equation for the bending stress in the case of arod under uni-
form transverseload the following expression can be derived:

E-l E B k=1/r curvature

q-L* L
g, = = . . 7|_
*“gw %D .
The maximum pitch of deflection sagis rod g
1 IR X R XX R XX EEE XXX EXX)
written as ) = ; - M;*-i, r
S '
34 E-1l 24 E |D " D diameter
L length
and the curvature of the transversely lo- E  Young'smodulus
aded rod isgiven by p  density
q uniform load
2 deflection
k:l: ZPL"lq( L f bending radius

Figure 5. Cylindrical rod, uniform bend-
ing load.

PENETRATORS OF CONSTANT BENDING STRESS

A better insight can be achieved if we only compare homogeneous rods made of the
same material. Then the factors containing p, E and aq remain constant. If the recurring
expressionsare named as (L/D) - L = f_and (L/D) = A, respectively, thisresultsin the fol-
lowing direct proportionsfor

Bending stress: Oy -8, | =L =aq-L2-D=aq-fL
_ _ L | t )
Maximum defl ection: €~a,- D-L] =a, |—| -D*=a,-f
2
Curvature: k~a,-|5] =a, -\
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These equations have interesting consequences: If we assumeidentical transverse ac-
celerations for the rods the dimensions of which are chosen with different diameters and
lengthsin such away that

fL = (L/D) - L= (L/D)2-D = const.,

then for penetrators of equal material
the following conclusions can be drawn:
The rods show identical maximum ben-
ding stress and identical maximum deflec-
tion. Thisis of course quite an interesting  Figure 6: Sketch of bended rods; fi =
aspect as far as design and construction of ~ const.; diameter ratio: 2:1.
long-rod penetrators are concerned.

Figure 6 gives an impression of the bending behaviour of two rods designed according
to the f_-rule. At adiameter ratio of 2 the length only increases by the factor of V2; and
we achieveidentical deflections.

If wetakethecriterion for geometrically similar rods, i.e.

A=L/D = const.

as a construction rule, then these penetra-
tors show identical curvature of bending S—
when charged by forces due to identcal —
transverse accel erations (seefigure 7). !

There are some interesting consequen-  Figure 7: Sketch of bended rods; I=const.;
ces of the above mentioned equations. diameter ratio: 2:1; thesmall rod isidenti-
— Generaly speaking, for rods under la=  cal totheonein Figure6.

teral acceleration the bending stress is

asquare function of the length and inversely proportional to the diameter. The deflec-

tion is proportiona to the forth power of the length and inversely proportional to the

square of the diameter.

— For rods with constant aspect ratios the bending stress turns out to be directly propor-
tional to the diameter, whereas the deflection isasquare function of the diameter.

— Inany casethe curvature shows asquare dependency on the aspect ratio.

— The parameter f|_isan indicator for the sensitivity and the reaction of bending rodsto
lateral load. Increasing values of f mean increasing bending stresses and increasing
deflections of therod.

EVALUATION OF EXPERIMENTS

Thetheoretical results described above can now be applied to experiments performed
with long rod penetrators. As no information was obtainable on acceleration data of the
rods and therefore a straight forward calculation is not feasible, we suppose to demon-
strate the inverse procedure: Starting from the visible experimental results, as to say the
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deflection of the bars, we shall
now evaluate the acceleration for-
ces necessary to cause that deflec-
tion and aso the corresponding
bending stresses.

Projectiles after Target
Contact

(Full-Scale Experiments)

The Figures 8, 9 and 10 show
X-Ray photographs from 4 real-
scale experiments with penetra-
torsof different lengths, diameters
and aspect ratios (A=21.6, 22.1
and 30) after having penetrated a
target plate a an angle of
60°NATO. The maximum deflec-
tion was measured from the
photographs and then converted

' il Sy

Figure8 (B-21022/ X-Ray: GR.FA.26)
- 1. : - - -

Figure9 (B-21006/ X-Ray: GR.FA.26)
. Cer ¥

Figure 10 (B-21015/ X-Ray: GR.FA.26)

Figure 8, 9 and 10: Long-rod penetrators after target
interaction (picturesarenotin scale).

according to the angle between

bending plane and projection

plane (measured by yaw cards). Table 1 gives the main penetrator dimensions, the value
of maximum deflection aswell as the corresponding cal culated data for the transverse ac-
celeration and the induced bending stress, respectively.

It can be noticed, that the bending stress data for these experiments do not differ very
much despite of the remarkable difference in the lateral acceleration rate. Thisis mainly
due to the diameter difference causing an increase in mass per unit length of some 60%
while comparing 1st to 2nd example. Also the total bending force (not listed) for case 2 is
still higher by about 25% despite of the acceleration ratio of (1.34:1).

Table 1: Acceleration and Stress as cal culated from experimental data

(name) D L A fL € a, o3
figure (unit) mm mm 1 m mm m/s? N/mm?2
8 21022 24 530 221 117 131 9155 1886
9 21006 31 670 21.6 145 14.9 6815 1737
10 21015 22 660 30.0 19.8 19.3 4695 1636

Thestresslevel isrelatively high if we take the dynamic strength of the rod material to
be 1350 N/mm2 (Figure 8, 9) and 1500 N/mm? (Figure 10). As there is no indication of
fracture two possible explanations can be given: Increase of dynamic strength dueto high
strain rates or onset of plastic deformation. In the latter case the calculated stress data are
no longer realistic values but only indicators for exceeding the elastic region and the dy-
namic strength.
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Asthe accelerations are al different, the parameter f_ can of course only serve as an
indicator for the bending properties of the particular rod and not anymore as a parameter
for equal stressrods. In that respect the simultaneous increase of the parameter f| and the
deflection € isaccidental aswell astheincrease of stresswith acceleration. But asamatter
of principle the interdependencies according to the basic equations derived above do
hold.

Projectiles after Launch (Model-Scale and Full-Scale Experiments)

Figure 2a and Figure 2b clearly demonstrate the bending of long-rod projectiles with
an aspect ratio of 40 travelling at velocities of about 1750 m/s. The X-Ray pictures were
taken shortly after acceleration with a 40 mm gun at 1.5 m and 20 m downrange the
muzzle. Experimental results and calculated data are listed in Table 2 (wherein D’ stands
for the diameter of arod with equal mass). In contrast to the datain Table 1 and as a con-
seguence of identical rods we now find bending stresses to be proportional to accelera-
tions. The penetrators show bending stresses at medium to high level but still below the
dynamic strength of therod material (1200 N/mm2).

Table 2: Acceleration and Stress as cal culated from experimental data

(name) D L A fL 3 a, Og
figure (unit)y | mm mm 1 m mm m/s? N/mm?
2a p06.7C8 242 4720 750
2b | po5.7C8 55 | 224 | 403 | 90 341 6650 1057
3 Pfeil-GE 26.2 950 36.3 345 11.0 1480 897

The full-scale experiment (Figure 3) shows an interesting result: The extremely long
projectile has a maximum deflection of 11 mm which is compared to the scaled rods
about proportional to the length. Yet the acceleration is much less (as might be expected
comparing the longitudinal accelerations of different calibre guns), whereas the bending
stresses match quite well. The reasons for this have aready been explained earlier, and
one should refer to the nearly equal values of aspect ratios but strongly differing bending
parametersfy .

At afirst glance it is nevertheless astonishing to recognize that the rods may suffer
from bending stresses at this level when being accelerated in longitudinal direction. Two
reasons can be given: Either we assume — as discussed and cal culated above — transverse
accelerations (which turned out to be in the order of about 1% of the longitudinal accele-
ration), or we admit longitudinal acceleration forces not aligned with or attacking out of
axis. As amatter of fact bending stresses become equal to axial stressesif the axial force
attacks at ameasure of 1/8 of the diameter out of centre (i.e. 0.7 mm in the case of Figure
2). Because of the superposition of the forces these effects can be crucia to the integrity
of the projectile.
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Transverse Acceleration Experiments

Evaluation of experimental results only from deflection data bear some uncertainties
especially concerning load and support conditions. To overcome this difficulties we per-
formed special acceleration experiments where load and acceleration conditions could
perfectly be controlled. In contrast to the above mentioned experiments the rods were
now subjected to atransverse accel eration exactly as postulated by theory. Thiswas done
by the aid of a specia (electromagnetic) “pancake” coil accelerator where the payload
consisted of a conductor disc, bar support and test bar, see Figure 11. The bar support was
designed to hold rods of different dimensions and masses — the total payload mass being
kept constant in order to guarantee constant accel eration.

Starting from arod with D=3 mm and L=30 mm (A=10; f =0.3) the two other rods
were designed with twice the diameter and according to the f =const. and A=const. rule,
see Table 3 and Figure 12. The acceleration was chosen to cause a subcritical bending
stressfor the constant stress rods, but should provoke rupture for the rod with equal aspect
ratio. Figures 13 to 15 show the X-Ray pictures taken from the experiments performed
with identical accelerations. It is obvious that the two rods with a diameter of 6 mm be-
have differently: The rod with f| =0.3 shows exactly the same deformation and shape as
the rod with 3 mm diameter, whereas the rod with A=10 breaks into pieces because of the
bending stresses differing by the factor of 2 (compare Table 3).

Table 3: Transverse accel eration experiments of rodswith diameter ratio 1:2

(name) D L A fi a Oy
figure (unit) mm mm 1 m nvs? N/mm?
13 SRX.3 3 30.0 10.0
15 SRX.7 6 425 7.08 03 181000 960
14 SRX.8 60.0 10.0 0.6 1920

Thusthetheoretical considerations could be proved by experiment. Furthermoreit be-
comes evident that full-scale penetrators are much more likely to break of bending stres-
ses than model-scale rods of equal L/D-ratio, taken that the stresses are caused by identi-
cal lateral accelerations.

FINAL REMARKS

From a relatively simple hypothesis on the load of bending bars by mass forces we
could establish a parameter which defines rods of constant bending stresses. Generally
valid rules for rods under lateral accelerations were discussed and proven by some pro-
perly designed experiments. The parameter is not only useful for designing long-rod pe-
netrators but also — as could be shown —it can be taken as atool to calculate accelerations
and stresses the penetrator has suffered. Of course one should not expect a very high ac-
curacy asthere are quite anumber of parameters which can not be defined very precisely,
as for example load and support conditions for the case in consideration. Nevertheless it
could be shown that the procedure gives amore or less accurate estimate of the penetrator
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status after acceleration or even penetration of atarget as far as maximum bending stres-
sesor elastic and plastic regimes are concerned.

Considering the equations derived above, it would be of someinterest to compare mo-

del-scale and full-scale experiments with corresponding penetrator data to each other. If
the lateral acceleration of the rod could be measured while penetrating a (possibly mo-
bile) target this would give a very useful straight forward explanation of penetrator suc-
cess or failure and hence some hintsfor an optimal penetrator design with regard to lateral
forcesand structural integrity.
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t=4,7ms

SRX.8

t=1,5ms

Figure 14: Acceleration of arod
D=6 mm, L/D=10 (see Table 3).

t=4,7ms
Figure 12: “Pancake” coil acceleraor (A);
three different payloads.

TN

SR 1=1.5 ms

—

Figure 13: Acceleration of arod Figure 15: Acceleration of arod
D=3mm, L/D=10, f  =0,3 (see Table 3). D=6 mm, f_= 0,3 (see Table3).
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