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INTRODUCTION

Projectiles of very high aspect ratios often show failure behavior because of structural
integrity and stability problems during the acceleration and flight phases, such as flexure,
buckling and/or bending vibrations which may also cause losses in terminal ballistic per-
formance. One possibility to overcome these difficulties is the use of heavy metal pene-
trators reinforced by a steel sleeve, so-called jacketed penetrators [1]. Those penetrators
have shown a good penetration performance especially in spaced armor in scaled experi-
ments as well as in full scale tests. In spite of the high aspect ratio the heavy alloy core
does not break, and the LOS-penetration is as high as in the reference RHA target [2]. 

The aim of this presentation is to demonstrate the penetration performance of me-
dium caliber jacketed penetrators in interesting target materials and to compare it to the
one of mono-block rods of different aspect ratios.

More information about results and comparisons of jacketed penetrators perform-
ances are found in [3, 4, 5, 6].

This presentation is to compare the flight behavior and the penetration perform-
ance of medium caliber L/D=40 jacketed penetrators in interesting ductile and
brittle target materials to the ones of L/D=20 and L/D=30 mono-block rods at
velocities of approximately 1550 m/s. The short mono-block projectile and the
jacketed penetrator fly without recognizable bending vibrations. The jacketed
penetrator yields a significantly higher penetration in RHA than the mono-
block projectiles. Post mortem photographs and X-ray pictures of the crater
forms in different brittle and ductile materials are presented. The jacketed
penetrator yields in all brittle and ductile target materials under investigation
the smallest space equivalence factors what means  that it performs better than
the mono-block projectiles.
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EXPERIMENTAL SET-UP

SW-Thun made jacketed penetrators
with an aspect ratio of 40 have been tested at
ISL in Saint-Louis (F) and at SW in Thun
(CH) against materials such as RHA, tita-
nium, aluminum, ceramics, glass, and high
hardness steels. For comparison reasons
these tests have been accompanied by addi-
tional experiments with ISL made mono-
block tungsten heavy alloy rods with aspect
ratios of 20 and 30. All projectiles have been
accelerated at SWT in 38 mm or at ISL in 
40 mm smooth barrel test guns up to velo-
cities of approximately 1550 m/s. 

In Fig. 1 photographic views of the three
projectiles are given. Some important data
are summarized in Tab. 1. Though the nor-
malized penetration of the jacketed pene-
trators has the smallest value due to its
higher L/D-ratio, its absolute penetration
into RHA at 1550 m/s is significantly higher
than the ones of the mono-block projectiles
because of its higher length and energy.

All projectiles are made of tungsten
heavy alloy. Some parameters of the penetra-
tor materials used for the two mono-block
and jacketed projectiles are seen in Tab. 2. 

Fig. 2 shows a schematic drawing of the
different  target configurations for the DOP
experiments as well as a list of the tested
target materials and their thicknesses. The
unconfined target consists of ductile mate-
rial plates C being placed in front of the
RHA backing B. The totally confined target
is used for brittle materials only in order to
simulate the self confinement of a material
with infinite lateral dimensions. Therefore,
lateral confinement plates L and a frontal
confinement plate F have been added. The
entrance hole ensures identical impact con-
ditions for both configurations. The achie-
ved penetration performances of the projec-
tile in the tested target (tz and Pres) are
compared with the reference penetration in
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Figure 1: Photographs of the test projecti-
les.

projectile L/D D L mpr vz Pref Pref/L
-1- mm         g       mm RHA -1-

G 154 20 7.25 145 105 1550

G 206            6 180 90 1550 5

H Pf 40 6.5/8.3* 260 188 1550

* outer diameter of the reinforcing jacket made of l

projectile L/D D L mpr vz Pref Pref/L
-1- mm mm               m/s mm RHA -1-

G 154 20 7.25 145 105 1550 126 0,87

G 206           30 6 180 90 1550 145 0,81

H Pf 40 6.5/8.3 * 260 188 1550 184 0,71

* outer diameter of the reinforcing jacket made of maraging steel

Table 1: Dimensions and reference perfor-
mance of the tested projectiles

tensile strength
N/mm2

density
g/cm3

Elongation
%

ISL 1100 17.5 11

SWT 1700 17.5 >5

Table 2: Penetrator materials

tested materials

RHA
Armox 600

titanium
aluminium

GFRP
SiC

Al2O3

glass

tz  /  mm

semi-infinite
100
100
140
200
100
100
95

reference
material

Bρref

Pref

Pres
tz

test materialsC

lateral
conf.L

frontal
conf.F

backing
(ref. material )
B

ρ

ρref

Configurations:

unconfined:

totally confined: ++ L+ BC F
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Figure 2: Target configurations and tested
armor materials.



RHA at the same velocity Pref. These results are used to define a layer of the reference
material of  the thickness

(1) 

which is equivalent (in terms of terminal ballistics) to the tested material of the thickness
tz. Now the space equivalence factor [6] can be defined as

(2)

A comparison of different projectiles impacting a constant test target at approxima-
tely the same velocity can be done by using the space equivalence factor: the projectile
which yields the lowest Fs-value has the highest penetration performance.

RESULTS

Reference Penetration

In the first series of experiments, the
three projectiles under investigation were
tested in RHA in order to get the fit curves
which were to be regarded as a reference for
the further experiments with different inert
armor materials. The diagram in Fig. 3
shows the experimental data as well as fit
curves of the Lanz/Odermatt type [7] at
impact velocities between 1400 m/s and
2000 m/s. The general fit equation is:

(3)

In Tab. 3 the Lanz/Odermatt parameters
of the three projectiles under investigation
are summa-rized. It can be seen in Fig. 3
that the jacketed penetrator (HüPf) has a
significantly higher penetration perfor-
mance than the mono-block  projectiles. As
expected, the longer mono-block projectile
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Figure 3: Reference penetrations in RHA.

G 154 G 206 Hüpf

a 2.379 2.076 1.478

b 1.554 1.509 1.328

Table 3: Lanz-Odermatt parameters

Figure 4: Craters in RHA (reference).



with the higher aspect ratio (G206, L/D=30) performs better than the shorter one (G154,
L/D=20). In order to compensate for the experimental velocity scattering, the reference
penetration is calculated with these fit curves for the measured impact velocity.

Only in RHA the craters are regular, straight and cylindrical. As will be shown later in
more details, in aluminum and titanium the craters are less regular and varying in diame-
ter and in direction.

Flight Behavior

Because of the well-known bending vi-
brations of high aspect-ratio projectiles
there was a  distinct interest to compare the
flight behavior of the three projectiles under
investigation. Fig. 5 shows exemplarily X-
ray pictures of the three projectiles flying at
a velocity of approximately 1550 m/s, taken
17 m in front of the barrel after the sabots

had taken off. The short mono-block projectile and the jacketed one fly without any re-
cognizable bending whereas the tip of the longer mono-block projectile is significantly
bent downwards. Of course, this misalignment of the L/D=30 penetrator will have nega-
tive consequences for its penetration performance, as will be seen later-on.

Crater Forms

In order to compare the penetration be-
havior, it has been tried to visualize the cra-
ters in the different target materials post
mortem. As far as ductile materials were
concerned, the target blocks have been cut
in the vicinity of the crater axis. In Fig. 6
photographs of the aluminum craters are
shown, the projectiles flying from the left to
the right hand side. In the case of the G154,
parts of the second plate broke off during
the cutting , so the upper contour of the cra-
ter does not have the real crater shape. Ne-
vertheless, it is seen that for all projectiles
the crater has a smaller diameter in the en-
trance region. Later-on its cross section
nearly remains constant. Plate interfaces as

well as the end of the crater show additional material brake-outs caused by impedance va-
riations. The diameters of the two mono-block projectiles are relatively similar in diame-
ter, whereas the jacketed penetrator causes a crater with a significantly larger diameter.
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Figure 5: X-ray pictures of the flying pro-
jectiles.

Figure 6: Aluminium craters.



In Fig. 7 the craters in titanium are pre-
sented in the same way as before in alumi-
num. Here, the projectiles with the larger
caliber cause the biggest crater diameters:
G154 in the upper two and HüPf in the low-
er two pictures. The L/D=30 mono-block
causes a crater which turns in the second
plate to the upper side, what surely is a con-
sequence of the bending vibrations mentio-
ned before.

In Tab. 4 the averaged crater diameters
in titanium and aluminum of all projectiles
under investigation are compared to those in
RHA. Two points may be pointed out:
Firstly: Though there is a steel jacket of ne-
arly 1 mm thickness which has only half of
the density of tungsten, the jacketed pene-
trator yields in all of the tree materials the
biggest averaged crater diameters. But if re-
ferred to the outer projectile diameter, it
yields the smallest relative crater diameter.
Secondly: Titanium and RHA have similar
crater diameters what shows again the good
protection performance of titanium [8]. 

The crater contours in totally confined
brittle materials are more difficult to visua-
lize. While opening the confinement boxes
the shot ceramic blocks of glass, Al2O3 and
SiC have been continuously stabilized by
adding a liquid glue. There-after X-ray pic-
tures have been taken which are summari-
zed in Fig. 8. Though it is not possible to
quantify the crater diameters, there are 
some interesting differences of the impact
behavior between the three ceramics recog-
nizable which seem to be common to the
three projectiles under investigation. 

In the case of glass the projectile mate-
rial is concentrated to the crater axis. This
special impact behavior has already been
observed earlier and was explained by a cra-
ter implosion as a consequence of the phase
transition occurring in this material after the
impact [9]. In the Al2O3 craters the projec-
tile material of all projectiles is mostly
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Figure 7: Titanium craters.

G 154 G 206   HüPf

aluminum 14.4           13.2         18.2

titanium 13.5           10.7         14.3
RHA 14.7           11.8         13.8

G 154 G 206   HüPf

aluminum 14.4           13.2         18.2

titanium 13.5           10.7         14.3
RHA 14.7           11.8         13.8

Table 4: Averaged crater diameters(mm).

Figure 8: X-ray pictures of ceramic craters.



found in the interstices between the tiles. Relatively big regions of lower density are visi-
ble with slightly different diameters, the smallest one corresponding to the G206. SiC
shows a behavior in between the other two brittle materials: here the projectile material is
also condensed near the crater axis showing a bigger diameter than in glass. The projectile
remnants might form a sort of a hull which then should be similar to the crater contour
during the impact. 

Ballistic Equivalence Factors

As it was mentioned before, a comparison of different projectiles can be done by
using the space ballistic equivalence factor (eq. 2): impacting the same target at the same
velocity the projectile which yields the lowest Fs-value has the highest penetration per-
formance. 

In Fig. 9 the experimentally achieved
space factors are shown in form of a mate-
rial related bar graph. The length of bars re-
presents the size of the space equivalence
factor for the different materials mentioned
in Fig. 2. For each of the three projectiles
under investiga-tion all materials are arran-
ged from left to right according to their
growing densities. 

All projectiles show a more or less simi-
lar penetration behavior. It is obvious that
the high hardness steel has the best protec-
tive power, the only target material which
yields space gains of more than 1 for all pro-
jectiles. GFRP (GFK) has the smallest equi-
valence factors in the order of 0.4. Alumi-
num and glass reach Fs-factors around 0.5
having relatively small protective power
differences. Another group of three materi-
als, titanium, Al2O3 and SiC, shows a simi-
lar protective effect with equivalence fac-
tors higher than 0.8.

In the bar plot of Fig. 10 the bars denote
the equivalence factors of the different pro-
jectiles arranged for the materials. The thick
solid line with the dots for each material

shows the density relation which is the quotient of reference material density divided by
target material density. As the equivalence mass factor is equal to the product of space
factor and density relation, it can indirectly be seen that low density materials such as
GFRP (GFK) and glass get higher mass factors than high hardness steel or titanium. 
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Figure 9: Material related space equiva-
lence factors.
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At the first glance it is seen in Fig. 10 that the longer mono-block projectile has the
highest Fs-factors with the exceptions of titanium and Al2O3. This means that the L/D=30
projectile mostly has the lowest penetration performances what surely will be a conse-
quence of the above mentioned bending vibrations. The jacketed penetrator yields in all
materials under investigation the smallest space equivalence factors what indicates that it
performs better than the mono-block projectiles. 

CONCLUSIONS

In opposite to the L/D=30 mono-block projectile the short mono-block projectile and
the jacketed one fly without any  recognizable bending vibrations.

In spite of the relatively small density steel jacket of nearly 1 mm thickness, the jacke-
ted penetrator yields in the three ductile target materials the biggest averaged crater dia-
meters.

The L/D=30 projectile mostly has the lowest penetration performances what surely
will be a consequence of its bending vibrations. The jacketed penetrator yields in all ma-
terials under investigation the smallest space equivalence factors what means that it per-
forms significantly better than the mono-block projectiles. 

Summarizing, it is stated that jacketed penetrators are an enriching alternative in order
to defeat brittle and ductile target materials for the use in light weight armor.
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