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Depleted uranium alloys that exhibit adiabatic shear localization and failure re-
sulting in a self-sharpening mechanism offer superior armor penetration capa-
bility when compared to conventional tungsten heavy aloys. Both amorphous
and nanocrystalline metals also exhibit shear banding deformation and failure
mechanisms. Subscale ballistic tests are conducted with an amorphous metal
aloy and a nanocrystalline tungsten-based composite. Penetration performan-
ces and the results of metallographic examinations of the residual penetrator
debrisare presented.

INTRODUCTION

When compared to tungsten heavy alloy (WHA) penetrators, the superior armor pene-
tration capability of depleted uranium (DU) aloy penetrators, is attributable to DU’s
“self-sharpening” adiabatic shear (AS) mechanism [1]. In DU, thermal softening, due to
the heat generated during high rate (effectively adiabatic) deformation of the penetrator,
quickly overcomes work-hardening mechanisms. The plastic deformation of DU be-
comes unstable and tends to focus in plastic localizations known as (AS) bands [2]. AS
banding is one of the few failure mechanismsthat can operate under the hydrostatic pres-
sures (approaching 6 GPa) in the head of the penetrator. This allowsthe DU penetrator to
quickly discard the deforming material at its head, producing a sharpened or chiseled
nose. By preventing the build-up of the large mushroomed heads observed on WHA pene-
trators, the AS failure mechanism allows a DU penetrator to efficiently burrow a smaller
diameter (and therefore deeper) penetration cavity at a given impact velocity, or to perfo-
rate agiven target at alower impact velocity [1].

Efforts in the United States to develop aternatives to DU for penetrator applications
have attempted to impart a similar deformation softening/shear localization behavior in
WHAS [3, 4]. Conventional WHAS are two-phase composites of nearly unalloyed tung-
sten particles embedded in a nickel alloy matrix, produced by liquid-phase sintering of
metal powders [5]. Because the tungsten phase itself is very resistant to AS localization,
efforts have primarily focused on replacing the nickel aloy matrix with one having a
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greater susceptibility to AS failure. A promising proof-of-principle for the approach was
established with the use of DU as the replacement matrix [6]. Alternative (non-DU) ma-
trices were selected on the basis of thermomechanical properties (such as low heat capa-
city, low work hardening, low strain rate sensitivity, and high thermal softening rate) that
promote plastic instability and localization [2]. Ballistic evaluations have shown impro-
vements in penetration behavior (greater susceptibility to shear localization), and signifi-
cant improvementsin penetration performance [ 7], however these novel tungsten compo-
sites have yet to equal the performance of the DU aloy (uranium with 0.75% titanium
mass fraction) used in current US ammunition. Amorphous alloys and nanocrystalline a-
loys are now being examined also, as candidate penetrator materials or asthe matrix alloy
in novel tungsten-based composites, because of their unique shear banding deformation
and failure mechanisms.

PROPERTIES OF AMORPHOUS AND NANOCRYSTALLINE
MATERIALS

Nanocrystalline materials are generally defined as having an average grain size of less
than 100 nanometers, while amorphous materials entirely lack the long-range atomic or-
der of acrystaline structure. The mechanical properties of these materias differ funda-
mentally from their conventional crystalline counterparts.

At higher temperatures and moderate strain rates, both amorphous metals (also
known as metallic glasses) and nanocrystalline materials can exhibit superplastic beha-
viors. At ambient temperatures, metallic glasses generally possess very high elastic strain
limits (2 to 3%) and, therefore, very high yield strengths (between 1.6 GPaand 2.0 GPa).
Beyond their elastic limits, however, the glasses do not exhibit strain hardening, and plas-
tic deformation is immediately localized into shear bands. The localizations occur in
quasi-static testsaswell asdynamic tests. The localization is generally modeled as result-
ing from a reduction in local viscosity, associated with an increase in “free volume” as
atoms move within the amorphous structure [8]. The nature of these localizationsis still a
very active area of research, but they do not appear to be thermally driven like the shear
bands in DU. Many nanocrystalline alloys exhibit a similar, perfectly plastic and shear
banding behavior in quasi-static and dynamic tests[9].

BALLISTIC TESTS OF AN AMORPHOUS METAL ALLOY

Until recently, amorphous metal alloys could be produced in only thin sections be-
cause cooling rates from the liquid metal exceeding 100,000 K/s were needed to avoid
crystalline nucleation. The development of bulk amorphous metal (BAM) alloys reduced
the required cooling rates to only 10 to 100 K/s and make it possible to produce BAM
specimens with substantial dimensions (up to 5 cm thick) [10]. A key constituent in BAM
alloyswith the highest glass-forming abilitiesis beryllium; it is highly toxic asametal or
a metal oxide and thus a concern regarding the aerosols generated in ballistic impacts.
New beryllium-free BAM alloys are being developed [11, 12]. Samples of one such aloy,
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Hfso 5TigNi14.6Cu17.9Al10, Were provided to the US Army Research Laboratory for
ballistic tests by Todd Hufnagel of Johns Hopkins University (JHU).

The aloy was produced by arc melting the elemental constituents under an argon
atmosphere. The melt was then quickly drawn into acold copper mold to cast rods appro-
ximately 70 mm long and slightly over 3 mm in diameter. The aloy has a density of
11100 kg/m3 (11.1 g/cm3) and ayield strength of about 2.2 GPa[12]. The glass-forming
ability of this aloy is not as good as the beryllium-bearing alloys, and small crystallites
were observed in metallographic examinations (Fig. 1a).

Two subscale penetrators (3 mm in diameter by 60 mm in length) with masses of
4.76 g and 4.78 g, respectively, were machined from the small melt-cast rods and fired
into steel targets. Both rods successfully survived launch from a smoothbore powder gun
using a laboratory launch package (with a plastic sabot and obturator and a steel pusher
disc). No residual stubs of penetrator were found in the penetration tunnels, but the ero-
ded penetrator debrislining the tunnel were examined (Fig. 1 band 2).

Figure 1. JHU penetrator material; (a) original as-cast microstructure of the glass with
scattered crystallites in the amorphous phase, (b) dispersion of dendritic crystals within
recrystallized penetrator residue.

Figure 2. Roughened penetration tunnel displaced by JHU penetrator material, evidence
of extensive melting of the penetrator and later formation of shrinkage cracks.

1185



Terminal Ballistics

On a macroscopic scale (Fig. 2), the wall of the penetration tunnel had a roughened
appearance, which is generally an indication that the penetrator had eroded or discarded
material in a discontinuous process, and implies that localizations had developed in the
deforming material at its head. Regions of apparently melted and heavily striated penetra-
tor material, as well as fractured chips (Fig. 1b) are visible in the erosion products lining
the tunnel wall. However, a close examination of the chips revealed a heterogeneous du-
plex structure with an isotropic dispersion of small dendritic crystals. Thiswas unlike the
origina mostly homogeneous as-cast amorphous alloy (Fig. 1a). After the penetration
event, localized heating most likely caused the penetrator material to melt and subse-
quently recrystallize under nonideal conditions.

BALLISTIC TESTS OF A NANOCRYSTALLINE TUNGSTEN
COMPOSITE

A tungsten composite was produced in atwo-stage ball milling process, —ball milling
tungsten and nickel powders to produce agglomerated powders with nanocrystalline
structures and then ball milling these powders with copper and aluminum powders. The
powders were then consolidated in a hot isostatic press (HIP), at a pressure of 200 M Paat
950 °C, to form atungsten composite with a density of 15200 kg/m3 (15.2 g/cc) [13]. X-
ray diffraction analyses indicated that average grain sizes grew during the consolidation,

10 um |
Figure 3. Microstructure of as-HI P consolidated W-Cu-Al-Ni, 200X.

The agglomerated, fully dense grains, as well as residual porosity, are visible in the
HIP consolidated material under optical metallography (Fig. 3). The finer grained sub-
structureisnot visible. The only mechanical property characterizations performed on this
material were Vickers Hardness tests (500 g load). The average reading was 717 HV 5qp,
which corresponds to an approximate Rockwell “C” hardness of 59. Details of the
processing history and material characteristicsare given by Biancaniello et al. [13].

The ballistic behavior and performance of this material was compared to those of a
conventional WHA with tungsten mass fraction of 90% (density of 17200 kg/m3). Side-
by-side tests, of quarter-scale rods of 65 g mass and length-to-diameter ratio of 15, deter-
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mined limit velocitiesagainst a3in. (76.2 mm) Rolled HomogeneousArmor (RHA) plate
at 0° obliquity (see Table 1).

Table 1. Ballistic Performance of Conventional and Nanocrystalline Tungsten-
Composite Penetrators
Penetrator Material Composition Density Limit Velocity vs.
(kg/m®) | 76.2 mm RHA (BHN302)
Conventional WHA 90W-9Ni-1Co 17200 1390 m/s
NanocrystallineW- | 86W-12Cu-1.5Al- 15200 1347 m/s
composite 0.5Ni

With a density of only 15200 kg/m3, penetrators of a conventional WHA would re-
quire velocities significantly higher (30—40 m/s estimated) than the 1390 m/s limit velo-
city of the 90% WHA against the RHA plate. Instead, the nanocrystalline tungsten com-
posite delivered a limit velocity approximately 40 m/s below that of the conventional
90% WHA, which represents an approximate 6% reduction in the kinetic energy required
to perforate the target. In a separate test, the nanocrystalline penetrator achieved a depth
of penetration of 70.1 mm into a 150-mm-thick RHA plate at an impact velocity of 1396
m/s, slightly greater than that expected of a conventional WHA penetrator of the same
density.

The nanocrystalline material displaced highly roughened penetration tunnels (Fig. 4a,
4b), suggesting that localizations had developed in the material. A large number of cracks
were observed in theresidual debriswhich lined the penetration tunnels, but their orienta-
tion (both radial and axial) suggest that these probably occurred during cooling of the ero-
sion products, after the penetrator had cometo rest in thetarget (Fig. 4b). The erosion pro-
ducts lining the penetration tunnel consist of chips of nanocrystalline penetrator material
(Fig. 4b, 5a), divided by thick boundaries of apparently melted penetrator material. Most
of the chips have rounded surfaces, implying frictional rubbing and heating between the
chips. Within each of the chips, the material retained the original microstructure. All of
these features are reminiscent of the features of DU erosion products (Fig. 5b), suggesting
avery similar process of localization of the plastic deformation in the head of the penetra-
tor, followed by the discard of discrete chips of material. Both of the ballistic results and
the metallographic observations indicate that this nanocrystalline materia’s greater pro-
pensity for shear localization and failure improvesits performance over that of conventio-
nal WHAsS.
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Figure 4. Residual penetrator and erosion products from nanocrystalline tungsten compo-

site, (@) Roughened penetration tunnel, (b) Erosion products of chips and melted zones
lining tunnel, note cracks formed upon cooling.

O ST IR
Figure 5. (a) Discrete chips of nanocrystalline tungsten composite penetrator material
embedded in thick melted zones (50X), (b) Erosion products from uranium-3/4% tita-
nium alloy penetrator, chips of moderately deformed material divided by adiabatic shear
(white etching) bands (30X).

CONCLUSIONS

The limited results detailed above indicate that the inherent shear banding behaviors
of nanocrystalline and amorphous materials offer some promise as reflacements for DU,
having the penetration capabilities similar to DU alloys, without the perceived hazards
and political difficulties associated with DU. Both materials exhibit a process of localiza-
tion of the plastic deformation in the head of the penetrator, resulting in the discard of dis-
crete chips of material.

The great advantage of DU alloys results from their combination of mechanical and
thermal properties that offer useful strength, ductility, and toughness at low to moderate
strain rates, yet produce rapid plastic localization and failure under high rate loading (the
adiabatic shear failure mechanism). This provides DU with the engineering propertiesre-
quired to survive the structural loads imposed during launch and penetrator interactions
with complex armors (oblique spaced plate arrays or reactive sandwiches), while the adi-
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abatic shear failures prevent the buildup of alarge mushroomed head during armor pene-
tration.

While DU devel ops the adiabatic shear failures only when the material is deformed to
high strain rates (such as during the armor penetration process), amorphous and nanocrys-
talline metals develop shear bands immediately after the onset of plastic deformation,
even at low strain rates. A challenge in the future will be to impart these materials with
sufficient ductility and toughness to survive structural loads without overly delaying the
shear localization and fail ure processes occurring during penetration.
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