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PENETRATION MECHANICS OF EXTENDING
HEMICYLINDRICAL RODS

David L. Littlefield, Ph.D and William G. Reinecke, Ph.D.

Ingtitute for Advanced Technology, 3925 W. Braker Ln., Austin, TX 78759, USA

The purpose of this numerical study is to examine the effect of cross section
geometry on the penetration mechanics of extending hemicylindrical rods. The
impact velocity is 2.2 km/s. Here, the cross section is varied by changing the
relative dimensions of the tongue/slot geometry for the fore and aft sections of
therod. Itisshown that the slot geometry can have a significant impact on the
performance of the penetrator. Narrow slots tend to produce cavities that exhi-
bit sidewall interference, whereas deeply protruding slotsresult in cavitieswith
exaggerated lateral dimensions. Assuch, the optimum slot geometry occursfor
an intermediate condition. At this optimum, numerical results predict that no
degradation in penetration occurs when compared to constant mass, constant
length cylindrical rods.

INTRODUCTION

Extending rods show great promise as a means of increasing the effective length and
performance of long rod penetrators. Thisis particularly true at velocities above 2 km/s,
where penetration efficiency is less sensitive to the aspect ratio of the rod. A variety of
Ccross-section geometries have been proposed that are amenabl e to extension; examples of
these include the so-called “tuning fork” and “rod-tube” configurations. At first glance
these geometries appear to be attractive candidates for achieving extension, since mass
centers of the leading and trailing cross sections are coincident. However, acommon fea-
tureto all these geometriesisa*“leg” or “tube” portion of the extending rod, which can ex-
hibit reduced penetration efficiency when compared to therest of the rod.

The penetration mechanics of alternative geometries for extension are investigated in
this numerical study. Here, the cross-section geometries of the extended portions do not
have the same mass centers. The simplest rendition of this geometry istwo offset hemicy-
linders. This configuration was first suggested by Barnette [1] as a possible configuration
for an extending rod and is investigated in detail here. Calculations have been performed
using the Eulerian hydrocode CTH, which suggest the enhanced performance of this con-
figuration. It is shown that the crater geometries formed from this penetrator avoid many
of the difficulties encountered with the“in-line” geometries.
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SETUP FOR THE CALCULATIONS

The cal culations were performed using the three-dimensional, multi-material Eulerian
hydrocode CTH [2]. The setup for the calculations is illustrated in Fig. 1. The target is
RHA with dimensions of 330 mm along the shotline direction and 152 mm square in the
two lateral directions. The penetrator is WHA with an extended length Le of 249 mm and
collapsed diameter De of 7.5 mm. The extension ratio h of the rod, defined as
n=(LeLe) —1, wasset to 0.98 in these simulations, so the corresponding collapsed length
L of the rod was 126 mm. Thus, the rod shown isone that is assumed to be launched in a
collapsed configuration, with length L. and diameter D¢, then extended sometime during
flight to achieve an extended length L at impact.

Figure 1. (Left)
Figure2. (Right)

Details of the cross sections for the fore and aft portions of the penetrator areillustra-
ted in Fig. 2. The cross section consists of atongue on the left side along with amatching
dot on theright side. For purposes of this paper, the |eft portion of the penetrator will be
referred to asthe T section, and the right portion the U section. The height h of the tongue
inthe T section was set to D/3 and was positioned symmetrically with respect to the hori-
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zontal axis in these simulations. Also, the cross-sectional areas of the U and T sections
were kept equal. As such, the geometry of the U and T sections are fixed with the specifi-
cation of Wy, the distance from the center plane to the edge of thetongue inthe T section.
Under these conditions, the dimensions Wy and W5 are related by a nonlinear relation of

theform
I3 oogtPNeE, W g (PN W W, 1
8 4 HD,H 2p,\" HD, D, D, @

Thisstudy considersthe effect of parametric variations of W1 on penetration, with W1
ranging from 0 to 0.35D; the limit of Wy = 0 corresponding to two equal areahemicylin-
ders, and Wy = 0.35D to aggressive channeling in the U section. A total of six calcula
tions were conducted in this study and are summarized in Table 1. The penetrator mass
and extended length were kept fixed in each case. Due to the differences between the U
and T cross section geometries for Wy # 0, these cases were run both with the T section
fore (Calculations 2 and 4) and aft (Calculations 3 and 5). Calculation 6 is the simulation
of a constant mass, constant length cylindrical rod that was performed for comparison
purposes.

Table 1. Summary of calculationsand results.

Calculation |V L. L. D, |W/D.| Wo/D, | Tsection| P
# (km/s) | (mm) | (mm) | (mm) | (-) (--) location | (mm)
1 2.2 249 | 126 75 0 0 N/A 277
2 2.2 249 | 126 75 | 018 | 0.09 fore 292
3 2.2 249 | 126 75 | 018 | 0.09 aft 246
4 2.2 249 | 126 75 | 035 | 0.18 fore 267
5 2.2 249 | 126 75 | 035 | 0.18 aft 231
6 2.2 N/A | 249 5.3 N/A N/A N/A 289

A few additional features were added to the extending rod simulations (Cal cul ations
1-5). Thisincluded cylindrical base and end caps, each with alength and diameter of 3.8
and 9.4 mm, respectively, as well aslands positioned at ten locations along the length of
the rod, each with alength and diameter of 1.6 and 9.4 mm, respectively. The purpose of
these additions was to replicate the features that might be present on alaboratory device
for launching arod with this configuration.

A 0.98 mm cubical computational mesh was used in the region surrounding the pene-
trator, aswell in regions of strong interaction within the target. Outside the interaction re-
gion, the mesh dimensions were permitted to grow at arate of 5%. This mesh is adequate
to provide reasonably resolved computational results for the cylindrical rod [3], and is
probably also sufficient for the extending rods, albeit a zoning sensitivity study was not
performed. Symmetry of the setup in the xz plane was exploited so that only half the pro-
blem wasrun (refer to Figs. 1 and 2 for the orientation of the xz plane).

A preliminary investigation showed that the complexity of the penetrator topology
made it virtually impossible to sweep it across an Eulerian mesh, particularly at the later
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stages of penetration where the aft portion of the rod arrives at the base of the crater. On
the other hand, here the target geometry is simple and amenable to advection across the
mesh. As such, these simulationswererunin “reverse ballistics’ mode, wherein the target
wasgiven aninitial velocity and impacted a stationary penetrator.

RESULTS

Results from the six calculations are summarized in the last column of Table 1, where
the penetration depth P is shown for each of the simulations. Asis evident from these re-
sults, the maximum penetration is achieved for the extending rod with W;/D¢ = 0.18 and
T section forward, and for the cylindrical rod, where the penetration depths are 292 and
289 mm, respectively. The penetration efficiency based on the extended length is about
1.16, which is consistent with the data found in the archival literature [4]. Penetration
depths for the remaining extended rods are degraded from this, the worst case occurring
for W1/D¢ = 0.35 and T section aft, where the penetration is about 20% lower than its ma-
ximum value.

The penetration behavior exhibited by this class of extending configurations is made
clearer through and examination of the material plots, shownin Figs. 3—5. Figs. 3a—3c
show atime history of the materials at 80, 160 and 300 ps, respectively for Calculation 1,
where W1 = 0. As can be seen from this sequence, there is some lateral engagement bet-
ween the aft section of the penetrator and the sidewall of the cavity produced from the for-
ward section. Thisimparts lateral momentum to the rod, which skews the base of the cra-
ter towards the opposite edge of the channel when the aft portion of the rod begins to
penetrate, as can be seen in Figs. 3b — 3c. As such, the deepest point of penetration is no
longer coincident with the original shotline. This behavior is characteristic of al the ex-
tending geometries considered in this study.
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Figure 3. Material plotsfor W; = 0when (a) t =80 s, (b) t = 160 us, and (c) t = 300 ps.

In Figs. 4a— 4c, the material plots are shown at 80, 160 and 300 ms, respectively for
Cadlculation 3, where Wy = 0.18D¢ and the T section is aft. Fig. 4a showsthat by 80 s, the
trailing T section of the rod enters the penetration channel, abeit there is less sidewall
interaction because the crater dimensions are larger in this plane than those produced for
W1 = 0. The lateral momentum imparted to the rod subsequently produces interaction
with the opposite edge of the crater, asis seenin Fig. 4b. The interaction is more signifi-
cant thanisseenin Fig. 3b for Wy = 0 sincein this case thereis atongue along the bottom
edge of the T section that strikes the sidewall first. Thisre-engagement of the sidewall be-
ginsto turn the base of the crater back towards the original shotline, asisseenin Fig. 4c.
Clearly, the severity of these lateral interactions would probably fracture the rod at this
stage, which is not modeled correctly in this Eulerian code, so the final penetration depth
in this case may be somewhat overestimated.
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Figure4. Materid plotsfor Wy = 0.18D¢ and T section aft when (a) t =80 ps, (b) t = 160 pis,
and (c) t=300 ps.

Much cleaner penetration behavior with very little sidewall interaction is seen when
the T section isforward. In Figs. 5a— 5c, the material plots are shown at 80, 160 and 300
s, respectively for Calculation 2, where Wy = 0.18D¢ and the T section is forward. Fig.
5a shows that by 80 ps, the trailing U section of the rod enters the penetration channel.
Thereisno interaction with the sidewall, but the clearances between the rod and the pene-
trator are slight. Fig. 5b showsthat by 160 ps, thetrailing U section beginsto penetrate at
the base of the crater and, unlike the other two cases, does not engage the opposite edge of
the sidewall near the base of the crater. Asaresult, the base of thefinal crater, seenin Fig.
5c¢, isnearly coincident with the original shotline of therod.

A closer examination of the penetration channel cross-section geometry reveals cer-
tain distinguishing characteristics that result in the performance differences seen in Figs.
3-5. Shown in Fig 6a—f are cross sections at 50 and 80 ps of the y-z plane located 25 mm
below the original shotline, for the simulations with Wy = 0, Wy = 0.18D¢ with T section
aft, and Wy = 0.18D with T section forward (refer to Fig. 1 for the location of the y-z
plane). Asis evident from Figs. 6a—c, the penetration channel produced by the T section
resultsin ageometry that is nearly cylindrically symmetric and leaves very little residual
tungsten along the crater sidewalls to interfere with the trailing section of the rod. The ef-
fect of thisis seen clearly in Figs. 6d-f, where erosion occurs for the trailing sections in
Figs. 6d and 6e.
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Figure 5. Material plotsfor Wy =0.18D¢ and T section forward when (a) t =80 s, (b) t =
160 ps, and (¢) t =300 ps.

CONCLUSIONS

The effect of cross section geometry on the penetration of extending hemicylindrical
rods has been investigated in this numerical study. The results show that the tongue/slot
geometry as well asthe orientation can influence the penetration of the rod. The best per-
formanceis seen for T sectionsimpacting first, with tongue/slot geometries having inter-
mediate dimensions. The cause for this behavior is made clear through an examination of
therod/target interaction.
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Figure 6. Penetration channel geometry 25 mm below the original target surface for (@)
Wy =0at 50 ps, (b) Wy =0.18D¢ with T section aft at 50 ps, (¢) Wy = 0.18D¢ with T sec-
tion forward at 50 ps, (d) Wy =0 at 80 s, (€) Wy = 0.18D with T section aft at 80 ps, and
(f) Wy =0.18D¢ with T section forward at 80 ps.
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