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Experiments and simulations have been conducted using scale size tungsten al-
loy penetrators at ordnance velocity against an oblique plate array consisting of
an inert sandwich and a base armour. The penetrators are made from 2 types of
tungsten alloy with different tensile strength. Two scale sizes have been used:
scale size 1:6 using simple cylindrical rods and scale size 1:3 with a more rea-
listic geometry including a threaded shaft section. The purpose of the experi-
mentsisto establish the difference in behaviour between the 2 types of penetra-
tors and to assess the differences between the scale size 1:6, scale size 1:3 and
full scale results. The purpose of the hydrocode simulationsisto assess the in-
fluence on penetrator performance of the yaw angle of the penetrator prior to
impact.

INTRODUCTION

The well-known competition between projectile and armour also includes tank am-
munition and tank armour. Tank ammunition has to be improved constantly for this rea-
son. Thisisnot aluxury, aswitnessed by tests against main battle tanks in both Germany
and the United States[1, 2].

In order to assess the performance of improved long rod tank penetrators, full scale
validation tests are essential. These full scale tests can not be performed in The Nether-
lands. The Netherlands co-operates with Switzerland, where full scale testing with tank
ammunition is a competence. The Dutch contribution to this co-operation is the fully in-
strumented scale size testing of long rod tank penetrators, assisted by computer simula-
tions of the phenomena during perforation and penetration of the complex plate array in-
volved. Scale size testing enables us to assess the influence of parameter variations (such
as projectile strength) on projectile performance at lower cost than full scaletesting.
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EXPERIMENTS

Penetrators and sabots

The geometry of the scale size penetratorsis based on the exact scaling of both length
and mass of the full scale long rod penetrator, because length and mass are considered to
be the most important geometry-related properties determining the penetration capacity
of along rod penetrator. Inevitably, a compromise has to be made somewhere and in this
case an equivalent rod diameter Deg is calculated from the scaled length and the density
of the penetrator material to satisfy the required scaled mass. The penetrators with scale
size 1:6 are simply smooth cylindrical rods with diameter Deg. The penetrators with scale
size 1:3 (aswell asthe full scale rods) have athreaded section to transfer the accel eration
forces from sabot to penetrator, a nose and tail diameter reduced relative to Deg to satisfy
the required scaled mass, and a spherical nose (full scale L/D = 30 with a 15° nose cone).
Fig 1. shows the assembly of penetrator and sabot for scale size 1:6, Fig. 2 shows the as-
sembly for scalesize 1:3.

Figure 1: Assembly for scalesize 1:6. Figure2: Assembly for scalesize 1:3.

The replica scal e penetrators were machined from full scale hammered tungsten alloy
rods for tank ammunition (“rod design A” and “rod design B”). Two types of penetrators
are involved: L/D = 20 penetrators and L/D = 30 penetrators, the latter are made from
higher strength material. The full scale penetrators are similar to the rod designs A and B.
Table 1 givesanumber of properties of thereplicascale and full scale penetrators.
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Table 1: Penetrator properties

Full scale Scalesize 1:3 Scalesize 1:6
L/D=20 Designation MX520 rod design A rod design A
Degx L @26 x 520 mm @8.22x 170.7mm  @J4.11 x 85.3 mm
Mass 4.6 kg 160.4 gram 20.05 gram
uTs 1400 MPa 1400 MPa 1400 MPa
ultimate strain 10 % 10 % 10 %
L/D=30 Designation MX660 rod design B rod design B
Degx L @22 x 660 mm @7.81x 226.7mm @3.91x 113.3 mm
Mass 4.6 kg 188.9 gram 23.61 gram
uTsS 1500 MPa 1700 MPa 1700 MPa
ultimate strain 10 % 8% 8 %

The penetrators with scale size 1:6 were launched with a 29 mm laboratory gun using
a pusher-plate type 4-piece PVC sabot, see Fig. 1. The penetrators with scale size 1:3
were launched with a 78 mm laboratory gun using threaded 4-piece aluminium sabots de-
signed and manufactured by SwRI (San Antonio, Texas, USA), seeFig. 2. The bore-riders
are covered by 4-piece Nylatron shells (not shown in Fig. 2). A total of 40 scale size expe-
riments have been conducted, 10 for each combination of scale size and penetrator type.
Thefull scale penetrators were launched by a 120 mm tank gun in Thun (Switzerland) by
GR/FS262 by Mr. W. Odermatt.

Target configuration and test set-up

Fig. 3 givesthe plate array for the third scale experiments. This scale size plate array
corresponds with the targets used for full scale testing in Switzerland (and of course the
sixth scale experiments) and are representative for spaced armour protecting the frontal
arc of main battletanks.

The sandwich and base armour plates (both at 60° NATO) are spaced from one an-
other using wooden spacers at a distance as large as possible from the intended point of
impact, see Fig. 4. This figure also shows the foils for triggering the flash X-ray equip-
ment to establish the penetrator orientation just before impact (vertical yaw on X-ray left
in picture, horizontal yaw on X-ray lying in front of the sandwich) and to capture the pe-
netrator between sandwich and base armour.
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Figure 3: Plate array for scale size 1:3 experiments.
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Figure 4. Platearray plustrigger foilsfor flash X-ray (scaesize 1.3).

Experimental results

Fig. 5 through Fig. 8 show typical scale sizeresultsfor the penetrator between the per-
forated sandwich armour and the yet to be penetrated base armour. The scale size 1:6 ex-
periments show the L/D = 20 penetrator to break its nose whereasthe L/D = 30 penetrator,
made from higher strength material, remains intact but takes a curved shape. The scale
size 1:3 experiments show multiple fractures in both types of penetrators, and again the
front part of the L/D = 20 penetrator getsfully separated from the rest of therod.

Figure5: Scalesize 1:6, L/D = 20. Figure6: Scalesize1:6, L/D = 30.

Figure7: Scalesize 1:3, L/D = 20.
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Figure8: Scalesize 1:3, L/D = 30.

Fig. 9 and Fig 10. show typical radiographsfrom full scale experimentswith L/D = 20
and L/D = 30 penetrators. These figures resemble the radiographs of the scale size 1:3 ex-
periments (Fig. 7and Fig. 8).

=

- o

Figure 9: Full scale, L/D =20 (Source: GR/FS264, Thun, Switzerland).

Figure 10: Full scale, L/D = 30 (Source: GR/FS264, Thun, Switzerland).

Table 2 summarises the experimental results as average % DOP (Depth Of Penetra-
tion) into the base armour. A DOP of 100% means complete penetration of the base ar-
mour. The velocities given in Table 2 are the average impact velocities of the concerning
experiments.

1235



Terminal Ballistics

Table 2: Average DOP as % of the nominal base armour thickness

scae size L/D=20 L/D=30

1.6 50%, 1767 m/s 57%, 1744 m/s
1:3 43%, 1798 m/s 36%, 1667 m/s
full scale 90%, 1635 m/s 100%, 1650 m/s

The average DOP of the third scale penetratorsis smaller than for the sixth scale pene-
trators and the L/D = 30 penetrators perform worse instead of better than the L/D = 20 pe-
netrators for the third scale experiments. Thisis caused by the breaking behaviour of the
threaded penetrators used for the third scale experiments, see Fig. 7 and Fig. 8. This
breaking behaviour is different for the L/D = 20 and L/D = 30 penetrators, partly explain-
ing the poor performance of the third scale L/D = 30 penetrators. Also the lower average
velocity of the third scale L/D = 30 penetrators (1667 m/s) compared with the L/D = 20
penetrators (1798 m/s) partly explainsthe low average DOP of L/D = 30 (36%) compared
with L/D = 20 (43%).

The DOP of the full scale experiments are well above the scale sizeresults. TheL/D =
20 or MX520 full scale rod has no chance to perforate the base armour at 1635 m/s. The
L/D =30 or MX660 full scale rod perforated the target in spite of breaking after the sand-
wich armour.

One of the original goals of thisresearch wasto investigate how well scale size results
compare with full scale results. Unfortunately, the scale size results themselves (1:6 and
1:3) cannot be compared. Apart from the divergence between these scal e size results, non-
scaling effects originating from not satisfying the replica model law are unavoidable,
hence making a perfect direct comparison between scale size and full scale resultsimpos-
sible. These non-scaling effects (especialy fracture toughness and time, see [3]) are ag-
gravated by using a complex plate array which results in breaking up of the penetrator
between sandwich armour and base armour. Nevertheless, the scale size 1:3 experiments
for both types of penetrators yield radiographs between sandwich armour and base ar-
mour corresponding with the full scale experiments. Replica scale modelling is useful in
investigating tendencies or in making comparisons, but validation by full scale resultsis
essential.

SIMULATIONS

Modelling

The simulations performed for this project ran on aUnix machine and used Auto-dyn-
3D version 3.0.07 up to and including 3.0.12.

For the penetrators the material ‘tungsten alloy’ from the Autodyn material library
(Johnson-Cook) has been chosen, using a shock equation of state. For armour steel the
material ‘4340 steel’ from the Autodyn material library (Johnson-Cook) has been chosen,
using alinear equation of state (a shock equation of state was not available for 4340 steel
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in Autodyn version 3.0). The material parameters for tungsten aloy and 4340 steel are
changed according to the known material parameters available (density, tensile strength
and ultimate strain). For the rubber sheet of the sandwich armour the library materia
‘polyrubber’ (Synthetics) was used. This material uses a hydrodynamic constitutive equa-
tion and has a shock equation of state. A sensitivity-analysis learned that for the model in
guestion it was not important which type of rubber was used as long as the density of the
material was correct (namely 1 g/lcm3).

The simulations for scale size 1:6 used ‘ Pmin’ (hydrodynamic tensile limit) as failure
criterion for both the penetrator and the sandwich armour. The later simulations for scale
size 1:3 (not included in this paper) used ‘ principal stress/strain’ instead of ‘Pmin’ asfai-
lure criterion for the perforation of the sandwich armour, because thisis physically more
correct. During the final stage of penetration of the residual penetrator into the thick base
armour the failure criterion was set to ‘none’ for both the penetrator and the armour be-
causethisisknown to give the best agreement with experimentsfor a projectile not perfo-
rating the armour. Also for the rubber sheet of the sandwich armour the failure criterion
was‘none’.

In al cases an erosion strain of 1.5 was used for the tungsten alloy penetrator and an
erosion strain of 2.5 was used for all steel armour plates. For the rubber sheet of the sand-
wich armour an erosion strain of 6 was used.

Simulation results
The intention of the scale size 1:6 simulations was to assess the DOP to be expected
fromthe L/D =20 and L/D = 30 penetrators as afunction of the yaw angles. For all simu-

lations the same impact velocity of 1750 m/swas chosen. Fig. 11 givesthe simulated L/D
= 30 penetrator between sandwich armour and base armour for the zero yaw situation.

[ty

Figure 11: L/D = 30 penetrator between sandwich armour and base armour for zero yaw
(scalesize 1:6).
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The various simulationsindicate that the influence of projectile orientation is most ap-
parent if the penetrator has a (horizontal) yaw corresponding with an inclination away
from the oblique target (-2° yaw, see Fig. 12). In this case the two types of penetrators be-
have differently. Theresidual L/D = 20 penetrator after perforation of the sandwich is still
amore or less straight rod of which the nose has broken off. Dueto theinitial yaw, therod
will be inclined even further away from the base armour during penetration (top of Fig.
12). In contrast, the L/D = 30 penetrator will have a bent nose after perforation of the
sandwich armour which leadsto arotation of the penetrator during penetration of the base
armour compensating for theinitial yaw (bottom of Fig. 12). Thisresultsin ahigher depth
of penetration than for an originally unyawed L/D = 30 penetrator (middle of Fig. 12).

PMLOOt0O16

LD =20, - 2' YAW:
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Figure 12: Penetrator behaviour after perforation of the sandwich armour, according to
thesimulations (scale size 1:6).

CONCLUSIONS

Both the scale size 1:6 and 1:3 experiments show the large effect that the inert sand-
wich armour has on the residual penetrator performance against the base amour of the ob-
lique plate array used for this research. This performance degradation is achieved by
breaking and bending aswell as rotation of the penetrator prior to impact onto the base ar-
mour. These phenomena level out differences in performance between the L/D = 20 and
the L/D = 30 penetrators. Nevertheless, the scale size 1:3 experiments for both types of
penetrators yield radiographs between sandwich armour and base armour corresponding
with the full scale experiments.
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According to the scale size 1:6 computer simulations, the influence of projectile
orientation is most apparent if the penetrator has a (horizontal) yaw corresponding with
an inclination away from the oblique target. In this case the two types of penetrators be-
have differently: the L/D = 20 penetrator achieves a smaller average DOP whereas the
L/D = 30 penetrator achieves ahigher average DOPthan for the zero yaw situation.

Dueto the divergence between the scal e size results and due to non-scaling effects ori-
ginating from not satisfying the replicamodel law, the scale size 1:6 and scale size 1:3 re-
sults cannot be compared and neither can the scale size and full scal e results be compared.
Replica scale modelling is useful in investigating tendencies or in making comparisons,
but validation by full scaleresultsisessential.
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