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HIGH VELOCITY JACKETED LONG ROD PROJECTILES
HITTING OBLIQUE STEEL PLATES
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A combined numerical and experimental study has been carried out on the
interaction between carbon fibre jacketed WHA long rod penetrators and ob-
lique steel plates. A comparison is made with anon-jacketed reference penetrator
with equal mass per length. Experimental results show that the jacket is strip-
ped off at an early stage. Neither the numerical simulations nor the experiments
indicate that a carbon fibre jacket improves the terminal ballistic performance
of equal length and mass long rod penetrators in oblique plate targets. On the
other hand, no obvious degradation of the terminal ballistic performance could
be found either. This means that carbon fibre jackets could very well be of
interest to enable launch of longer, more efficient penetrators.

INTRODUCTION

High velocity long rod kinetic energy penetrators constitute a major threat to armou-
red vehicles. Since the penetration capability is strongly dependent upon penetrator
length, alot of effort has been put into developing ammunition with longer penetrators.
The mass of the launch package (sabot and penetrator) cannot be increased without a re-
duction of the muzzle velocity. Thus, for the muzzle velocity to be maintained, an in-
creasein penetrator length implies adecrease in penetrator diameter. A thinner and longer
penetrator means lower flexural strength, which may cause bending and breaking of the
penetrator during launch. One way to solve this problem is to strengthen the penetrator
with ajacket of alight and strong material, for example carbon fibre. Such ajacket would
strengthen the projectile during launch, reduce the possibility of buckling and suppress
bending oscillations. For the jacket to be able to transmit the acceleration loads from the
sabot and to maximize flexural strength, it needs to be firmly attached to the penetrator.
This coupling can be donein anumber of ways, most of them resulting in the jacket being
attached to the penetrator when hitting the target. For this reason, it is of interest to study
how thejacket affects the penetration performance.

Modern tank armour often includes one or several oblique steel plates placed at a di-
stancein front of the main armour. The purpose of these platesisto induce yawing, bend-
ing, and break-up of the penetrator by the application of lateral forces. In the study pre-
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sented here, the interaction of carbon fibre reinforced plastic (CFRP) jacketed penetrators
and oblique plates was investigated. This problem has previously been investigated in for
instance[1].

The projectileswereidealised to be smooth cylinders, without the geometric details of
real projectiles. Both numerical simulationsand experimentswere carried out.

NUMERICAL SIMULATIONS

Numerical simulations were performed for ajacketed penetrator and a reference pro-
jectilewithout ajacket. The two projectiles were of the same length and mass and the im-
pact velocity was 1800 m/s. The projectile and target plate geometriesare shownin Fig. 1.
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Figure 1. Penetrator and target initial geometries.

The numerical simulations were done using the AUTODYN 3D v. 3.1.15 code [2],
with the Lagrange technique. Material modelling for both the projectile and the target was
done with alinear equation of state and the Johnson-Cook [3] constitutive equation. Data
used for the tungsten penetrator material (DX2HCMF) and the steel target plate (SIS
2541-03) have been published in [4]. For the penetrator material, no failure criterion was
used, whereas abulk strain failure model was used for the steel plate material. The CFRP
jacket was modelled as an elastic orthotropic material with a bulk strain failure model.
The stiffnessin the axial direction was 0.3 GPaand in the radial direction 0.01 GPa. The
jacket was not joined to the core since the low shear strength of the plastic binder cannot
be expected to contribute significantly to the coupling. The target plate was unsupported.
The simulations were run to 150 ms after impact and grid data were then exported to
MATLAB where centre of mass (C), angular momentum (H) and impulse (P) were cal cu-
lated for the residual penetrator. In Fig. 2, theresidual penetrator is depicted at 150 ms af -
ter impact for thetwo cases studied.
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Tungsten projectile with carbon fibre jacket Tungsten projectile with no jacket
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Figure 2. Residua penetrator geometriesat 150 ms

EXPERIMENTS

The experiments were performed using the reverse impact technique. The projectile
was placed in front of the muzzle of the gun, and a special sabot was used to launch an ob-
liqueplate, asisshowninFig. 3.
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Figure 3. Oblique plate launch package and experimental geometry.

Experimental Set-up

The experiments were conducted using a two-stage light-gas gun. Three shots were
fired, two with CFRP jacketed projectiles and one with no jacket for reference. The jacket
consisted of a high modulus CFRP with al fibresin the axial direction. The fibre content
was 65% by volume and the density was 1600 kg/m3. The jacket dimensions were chosen
to keep the mass per length equal to that of the reference projectile. The tungsten core was
made from Plansee Densimet 176 FN and the plate from SIS 2541-03, comparable to the
AlS| 4340 quality. Five 150 kV X-ray flashes were used, three for registration of the resi-
dual penetrator behaviour and two to determine the impact vel ocity.

Registrations and Evaluation Method
In Fig. 4, X-ray pictures of the residual penetrator at 150 ps are depicted. From the

X-ray pictures, theresidual penetrator outline was traced using a CAD-program. The out-
lineswere then corrected for the projection displacement as shownin Fig. 5.
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Figure 4b Shot 2. Projectilewith Figure 5b Projectile position
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Figure 4c Shot 3. Reference projectile Figure 5¢ Projectile position
with no jacket. 1656 m/s. compensated for projection displacement.

In evaluating the X-ray pictures, a good approximation of residual penetrator mass
can be obtained by assuming that the ratio between penetrator volume and projection area
is the same as for that of a cylinder. With this assumption the volume is given by
V= 11-rg- A2, where Aisthe projected areaon the X-ray film and rg the original penetra-
tor radius. This assumption should give good accuracy for the main penetrator, which is
closeto cylindrical form even after interaction with the target. The smaller fragments, ho-
wever, are less suited for this method of evaluation since they cannot be approximated as
cylindrical segmentswith the same degree of accuracy.

The angular momentum, given by

Ho =3 JSuk+ 3 foe XMV, ®
and theimpulse
P =nv,

was then calculated using the projection corrected residual penetrator outlines shown in
Fig. 5.
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RESULTS

Fig. 6 showsthe linear and angular velocities for the different parts of the residual pe-
netrators in the experiments, as well as the corresponding angular momentum and im-

pulse.
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Figure 6. Projectile linear and angular velocities and corresponding angular momentum
and impulse.

Fig. 7 shows simulated and experimental results for the four response parameters an-
gular momentum, impulse, velocity reduction and residual mass.
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Figure7. Resultsfrom numerical simulations and experiments.

1245



Terminal Ballistics

InFig. 8, therecovered residual penetrators are depicted.
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Figure 8. Recovered penetrators.

When comparing the cal culated mass with the measured mass of the recovered pene-
trators, the errors were found to be rather small. In shot one, the main residual penetrator
mass differed 1.1%, in shot two 0.08% for the main residual penetrator and 6% for thetip
fragment and in shot three 1.4% and 0.42% respectively.

DISCUSSION

Numerical Simulations

Fig. 2 showsthat the jacketed penetrator is more disturbed than the reference penetra-
tor. No stiffening effect of the CFRPjacket is obtained since it was stripped off during the
perforation of the plate.

The response parameters shown in Fig. 7 are very similar for the jacketed and the refe-
rence penetrator except for the angular momentum, which is considerably higher for the
jacketed penetrator. This could possibly be explained by the larger contact surface, dueto
thelarger diameter, in the case of the jacketed penetrator.

Experiments

From the X-ray pictures, the following observations can be made. Shots one and two,
fired with identical CFRPjacketed penetrators and nearly the sameimpact velocity, resul-
ted in quite different behaviour. In shot one, the penetrator deforms substantially, but does
not fracture. In shot two, part of the tip breaks off in alarge fragment which is accelerated
laterally, while the main residua penetrator remains straight with limited yaw. This could
beinterpreted asif the applied |oad on the penetrator is close to the failureload. The beha
viour of the reference penetrator is very similar to that of the fracturing jacketed penetra-
tor, but the main residual penetrator is shorter and with greater yaw. An abundance of
jacket material was found on the front surface of the plate and no signs of jacket material
can be found in the X-ray pictures of the residual penetrator. Thisindicates that the jacket
is stripped off when perforating the plate, in accordance with the simulated results. It can
also be concluded that the penetrator break-up must have taken place inside the plate or
immediately on exit.
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The response parameters accounted for in Fig. 7 are very similar for the fracturing
CFRP penetrator and the reference penetrator. Thiswould indicate that the addition of the
jacket has little effect on penetration performance. It can be noted, however, that for the
nominally equal shots one and two, the velocity reduction and impulse differ consider-
ably. The penetrator impulseis greater in the case where no tip fracture occurs. Since the
residual mass is very similar, the difference in impulse must be due to a different force-
time history for intact and fragmenting penetrators.

No jacket material was found on the recovered penetrators, which further indicates
that the jacket is stripped off in the penetration process. In the penetrator from shot one,
the distinctive mushrooming of the tip is accompanied by a plastic bending of the front
half of the penetrator. Some small cracks are also evident just behind the mushroomed tip.
The tip fractures in shot two and three are located in nearly the same position, which
would indicate that the addition of acarbon fibre jacket at the expense of tungsten diame-
ter does not affect the position of the tip fracture, if fracture occurs. The similarity of the
two tip fractures might also indicate that the location of the fracture is not governed by
material inhomogenities, but rather the effect of a distinctive tensile stress concentration
dueto the dynamic bending of the penetrator tip.

Comparison between Numerical Simulations and Experiments

The mass reduction is much larger in the simulations than in the experiments, which
might be explained by the numerical erosion algorithm used. The erosion could also ex-
plain the considerably smaller velocity reduction and impulse due to the relaxation effect
of numerically eroding el ements under pressure.

CONCLUSIONS

Neither the numerical simulations nor the experimentsindicate that a CFRPjacket im-
provestheterminal ballistic performance of equal length and masslong rod penetratorsin
oblique plate targets. On the other hand, no obvious degradation of the terminal ballistic
performance could be found either. This means that carbon fibre jackets could very well
be of interest to enable launch of longer, more efficient penetrators.
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