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OBSERVATIONS ON THE RATIO OF IMPACT ENERGY TO
CRATER VOLUME (E/V) IN SEMI-INFINITE TARGETS

R. Subramanian, S. Satapathy, D. Littlefield

The Institute for Advanced Technology, 3925 W. Braker Ln., Austin, Texas 78759, USA

The ratio of impact energy to crater volume (E/V) is a measure of the work
done on the target to create crater volume. Thisratio, however, neglects energy
dissipated in deformation of the penetrator. In this paper we show, analytically
and in hydrocode simulations, that this fraction of energy is non-negligible at
lower velocities and acconnts for a portion of the observed velocity depend-
ence.

INTRODUCTION

In the penetration of semi-infinite targets the ratio of impact energy to resultant crater
volume (E/V) is a measure of the efficiency of crater formation. While efficiency in this
sense does not necessarily imply efficiency in penetration depth (typically quantified as
penetration per cube root of impact energy, P/EL/3), it neverthelessis a useful metric. Pro-
posed to be an inherent property of the target material [1], experimental data show that it
isafunction the properties of the penetrator material aswell astheimpact velocity [2].

However, relating the impact energy to the work donein creating the crater implicitly
assumes that the energy spent in deformation of the penetrator is negligible. Alekskeevski
[3] noted that some account be made for the energy lost in this deformation process and
various authors have shown that this energy can be anon-negligible fraction of the impact
energy [4,5]. Nevertheless, energy-based penetration and cavity growth models typically
assume a direct transfer of kinetic energy from the penetrator to work done in the target,
eg., [6].

In this paper we examine more closely the energy spent in deformation of the penetra-
tor and its effect on the ratio of impact energy to crater volume (E/V). A brief review of
previous work is given and simple analytical estimates are made of the fraction of impact
energy spent in penetrator deformation. The results are compared with simulations of
monolithic tungsten projectilesimpacting semi-infinie steel targets.
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BACKGROUND

In the development of theoretical models for the penetration of shaped charge jets it
was proposed that the ratio of impact energy to crater volume (E/V) was a materia pro-
perty of the target [1]. Often expressed in the units kilojoules per cubic centimeter
(KJcce), this quantity is numerically equivalent to stress measured in GPa and hence has
been considered as a strength property of thetarget material.

Experimental data, however, show that E/V is afunction of both the impact velocity
and penetrator geometry [2]. For monolithic penetrators, lower aspect ratios (e.g.,
spheres) are more efficient at creating volume than higher aspect ratios (e.g. rods). Both
types of penetrators show trends of decreasing E/V (i.e., increasing efficiency) with in-
creasing impact velocity, although it is not clear whether thisis an asymptotic approach to
acommon value or aminimum inthe E/V versusvelocity curve.

An alternate analysis has been developed that suggests E/V is aso related to theratio
of densities. This model, originally developed for hydrodynamic penetration, has been
extended to include the effect penetrator strength [6]. In this approach, velocity depend-
ence is derived from a factor “K” that accounts for penetration velocities less than
hydrodynamic. The momentum-based Tate/Alekseevski model is used to estimate this
factor.

The effect of penetrator strength has been explored by various researchers [7,8]. Al-
though the higher strength penetrators initially have a higher penetration efficiency
(dP/dL) this decreases as the projectile decel erates and as penetrator material builds up at
the bottom of the crater, referred to asthe projectile flow effect.

PENETRATOR DEFORMATION ENERGY

The purpose of this section isto estimate, analytically, the energy spent in deforming
the penetrator material and relate this quantity to the available energy. Two methods will
be used to estimate this quantity; both will assume afully eroding projectile and an elas-
tic, perfectly-plastic material model.

A Simple Model

For the large strains experienced by the penetrator material the energy spent in deform-
ing thismaterial is primarily plastic work, the product of the total plastic strain (€) and the
flow stress (Y). Normalizing the deformation energy (Ep) by the impact energy (E)
yields:

E, _2¢e¥ !

E, p* @
where p is the density of the penetrator material and v is the impact velocity. While this
estimate is arguably crude, it emphasizes the velocity dependence of the fraction of im-
pact energy absorbed by the penetrator.
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Cavity Expansion Model

The simple model described above provides a first-order estimate of the velocity de-
pendence of the fraction of impact energy spent in deformation of the penetrator material
but requires a prior assumption of thetotal plastic strain. A direct estimate of thisfraction
can be obtained by computing the energy spent in deforming the penetrator material from
theinitial solid circular rod form to the final expanded tubular form. Although the actual
deformation process is complex, cavity expansion analysis can be used to estimate the
energy expended in this process.

Cavity expansion analysis has been used to compute the energy expended in creating
crater volume (E/V) [9]. Thework done in opening a cavity from zero radiusis derivedin
either cylindrical or spherical coordinates with actual process assumed to lie between
thesetwo estimates.

For the present analysis we examine cavity expansion within afinite volume of pene-
trator material surrounded by an infinite space of target material. The energy expended in
deformation of the penetrator is the difference between the work done opening this cavity
and the work done on the surronnding target material. The projectile (fully plastic) occu-
pies the radial position from a to b and the plastically yielded section of the target occu-
piesthe radial position from b to c. The region beyond c isthe elastic region in the target.
In cylindrical coordinatesthe radial stress at the elastic-plastic boundary can be shown to
be Yy/2 with a Tresca yield criterion. The equilibrium eguation in the plastic regions is
given by

do, = 1% @
r

Integrating this equation from a to b and from b to ¢ and using continuity of stresses at

the boundaries one obtains

ol :|i£/’—+Y,ln—C—}+Y1né. A3)
r=a 2 b P a

The sum in the square brackets is equal to the static cavity expansion pressure in the
target material. Hill has shown that thistermisequal to the energy expended in creating a
cavity of unit volume, inespective of the mode of formation of cavity [9]. Thus the last
term in the r.h.s. gives the additional energy required to expand the penetrator material.
Thus, thework donein deformation of the projectileisgiven by,

b a
E ‘ ’
2o - L1 6,210 - [0, 2mada . (4)
v, 7|} 0

P

Assuming incompressibility in both penetrator and the target materials (b = b% —a2),
E 2y, | “ Y a) o b:
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The subscripts o and f correspond to theinitial and final radii. A similar derivation can
be madein spherical coordinates, which resultsin:

E, 2Y P 2 }
="zl 1+a—-§ +a—-§1n 1+b—‘1 . (6)
v, 3 b b a;

To compute the work expended in cavity expansion using either of these equationsthe
ratio of final cavity radiusto theinitial rod radiusisrequired. We use acurvefit to datafor
tungsteninto steel [11] given by [12], where theimpact velocity, V, isgivenin km/s:

a, 2
L =14+0287V +0.148V " .
5 ©

The estimates provided by (5, 6) can be normalized by the impact energy, pV2/2, to
obtain values corresponding to those given by (1). Comparison of these estimates will be
made with resultsfrom the simulationsin the Discussion section.

CTH SIMULATIONS

Simulations were performed using the Eulerian wavecode CTH [13]. Three penetrator
geometries (L/D 1, 10, and 30) were evaluated at three impact velocities (1.5, 3.0 and
4.5 km/s). All of the penetrators were right-circular cylinders with a diameter of 1.0 cm.
The Johnson-Cook model was used for both the tungsten penetrators and the steel targets
with material propertiestaken from[14].

During the penetration process the impact energy is partitioned between between the
penetrator and the target materials and exists either as kinetic, elastic (stored), or plastic
energy. The simulations allow tracking the process of this conversion (see, for example,
[4,5]) but our interest hereisin the final partioning of the impact energy between the two
materials. At the end of the penetration event the residual kinetic energy is minimal and
the bulk of the energy exists asinternal energy. In the target material it is divided between
energy dissipated as heat during plastic deformation and elastic energy stored in the sur-
rounding material. In the penetrator material it exists primarily asthermal energy genera-
ted during deformation. Table 1 liststheimpact energy (E,) of the penetrator and the final
internal energy in the penetrator and target (Ep and Ey). Ideally, the sum of the internal
energy in the penetrator and the target materials should equal the impact energy. For the
rod type penetrators the sum is ~95% of the impact energy; for the L/D 1 projectilesitis
only ~85%. A portion of this discrepancy (~3%) stems from numerical-based errors. The
discrepancies are a result of the slight advection errors in energy which get magnified
when the reference state for the energy is shifted at the end of the calculation (the energies
listed in Table 1 were shifted so that the internal energiesfor the projectile and target were
initially zero). Unfortunately, the equation-of-state library in CTH does not allow inde-
pendent control of the energy reference state so these errors were unavoidable.

Also measured in the simulations was the resultant crater volume in the target mate-
rial. Asistypically donein experimental measurements, this volume was measured to the
original impact plane and hence does not include the volume enclosed by the lip of target
material pushed up around the entrance crater. These volumes, normalized by the initial
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penetrator volume, are listed in the final column of Table 1. It should be noted that nearly
al of theinitial penetrator material remained within the crater volume. The normalized
crater volumeslisted include this material, i.e., the crater volumeswere measured asif the

residual penetrator material was not present.

Table 1. Energy partitioning and crater volumefrom CTTI calculation

L/D Vi (km/s) Eo (KJ) Ep (KJ) Et (KJ) Ve/Vp
] 15 14.9 1.63 18.8 3.98
3.0 595 243 49.0 17.3
45 134 3.70 107 3738
10 1.5 152 20.0 128 3.05
3.0 610 233 561 15.0
45 1372 272 1265 364
30 1.5 458 71.0 364 2.33
3.0 1832 69.6 1705 13.1
45 4131 80.0 3851 33.7
DISCUSSION

Theratio of impact energy to crater volume obtained in the simulationsislisted in Ta-
ble 2 as Ey/V . These values are plotted in Fig. 1 as a function of impact velocity for the
three projectile types. Also included in this plot are experimental datafrom [11, 15]. The
overall trend of the simulations matches the experimental data, namely a decreasein E/V
with impact velocity and an L/D effect in which higher aspect ratio projectiles are less ef-
ficient at creating crater volume. Our purpose hereisto verify that the simulations reason-

ably match experimental data.

Table 2. Normalized energiesfrom CTH simulation

L/D Vi (km/s) Eo/Vc (GPa) Et/Vc (GPa) Ep/Vp (GPa) Ep/Eo
1 1.5 4.76 6.00 2.07 0.11
3.0 4.38 3.60 3.10 0.04
4.5 4.51 3.61 4.72 0.03
10 1.5 6.37 5.33 2.55 0.13
3.0 5.16 4.75 2.97 0.04
4.5 4.80 4.43 3.46 0.02
30 1.5 8.33 6.62 3.01 0.16
3.0 5.94 5.53 2.95 0.04
4.5 5.21 4.85 3.40 0.02
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Figure 1. E/V from the CTH simulations and literature data.

Theinternal energy in the penetrator material islisted in Table 2 as Ep/Vp and plotted
as afunction of impact velocity in Fig. 2. This quantity increases slightly with increasing
impact velocity, but it is essentially constant as noted by other researchers. The exception
isthe energy spent in deforming the L/D 1 projectile which increases significantly. In all
cases, however, thevalueis greater than the flow stress suggesting afinal plastic strain of
approximately 1.5. Alsoincluded on thisfigure are the estimates provided by the cylindri-
cal and spherical cavity expansion models (5, 6). An average strength, Y, of 1.8 GPawas
used to account for the strain hardening included in the Johnson-Cook material model.
The analysis follows the simulations reasonably well, with the cylindrical model more
closely matching the computational results.
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Figure 2. Energy spent in penetrator deformation.
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Because energy spent in deforming the penetrator material remainsrelatively constant
it becomes a decreasing fraction of the impact energy. This trend is shown in Fig. 3, in
which Ep/E, obtained in the simulations is plotted as a function of impact velocity. Also
included inthisfigure arethe analytical estimates derived above.

Finally, Fig. 4 showstheratio of internal energy in thetarget to resultant crater volume
(E¢/V ). It is this quantity that cavity expansion analysis argues is an inherent material
property of the target. Nevertheless, there still existsan L/D effect and some velocity de-
pendenceisevident.

CONCLUSIONS

The ratio of impact energy to crater volume has been a part of theoretical penetration
mechanics for many years. Although originally postulated to be abasic material property
of the target, experiments have shown it to be somewhat dependent on the properties and
geometry of the projectile. Most significantly it varies with impact velocity, increasing
significantly for rod type projectiles at the low velocity.
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Figure 3. Fration of impact energy spent on penetrator deformation.
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Figure4. Internal energy in target material normalized by crater volume.
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It is perhaps obvious that some portion of impact energy is expended in deforming the

penetrator and henceis not available to perform the work required in forming the crater in
the target material. Nevertheless, this effect is generally neglected in energy-based pene-
tration modeling. At sufficiently high velocities this assumptionisvalid, but as these mo-
dels are applied to lower velocity impacts the effects are no longer negligible. Projectiles
with high strength to density ratioswill magnify this effect.
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