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INTRODUCTION

Presence of yaw can substantially degrade the penetration performance of long rod
projectiles. The penetration depth is not much affected for relatively low yaw angles. For
yaw angles below the critical value (at which the tail just touches the side wall of the pe-
netration crater,) the penetration is mostly along the length of the long rod. At very large
yaw angles, the lateral erosion and deceleration limit the penetration depth to a few times
the diameter of the rod. In between these two extremes, the penetration performance de-
grades progressively as the yaw angle increases above the critical yaw angle. The primary
cause of this penetration degradation can be attributed to the re-alignment of the velocity
vector due to the lateral load exerted by the target. For example, Fig. 1 shows the result of
a hydrocode calculation of a yawed long rod impacting the edge of a thick target. As
shown by the enlarged velocity vectors at entree and exit, it is clear that the net effect of
the lateral load is to turn the velocity vector into the local length direction, while the long
rod cuts a slot into the target due to the lateral velocity component. This velocity reorien-
tation reduces the effective yaw. The amount of local yaw reduction should depend on the
length of the rod, its velocity and the initial yaw angle for given material pair. For exam-

Reverse ballistic experiments were conducted in the IAT Electro-Magnetic
launcher to study the effects of yaw in deep penetration. The experiments with
copper rods and aluminum targets show that the penetration channel in the tar-
get is mostly circular arc shaped with the tip reglon exhibiting a modified shape
due to back flow and material accumulation. The presence of yaw destroys the
symmetry of flow at the penetrator tip, unlike in normal penetration. The mea-
sured value of the cavity curvature is close to the theoretical value for pure cir-
cular motion caused by the lateral load due to cavity expansion pressure. The
lateral contact surface is not smooth for some cases indicating possible contact
instabilities. Target strength has a large effect on the cavity curvature and final
penetration depth. All these aspects of yawed penetration, which degrade the
penetration efficiency, are discussed in light of the experimental evidences
presented.
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ple, for very high impact velocities the rod
may be consumed before the velocity
alignment is completed. There have been
models [1,2] that quantify the lateral load
exerted during slot-cutting by the target
material on the yawed rod. It has been
shown that plane strain cavity expansion
pressure (about 3 times the yield strength
of the material for metals) is a good meas-
ure of the steady state lateral load. For
plate targets this steady state load is modi-
fied by transients primarily caused by im-
pact cratering and rod embedment. These
models work very well for thin to modera-
tely thick plate targets, for which exit sha-
pes are well matched by the theory. How-
ever, for thick targets, as the shape of the
rod changes progressively due to turning of the velocity vector, erosion and accumulation
of penetrator material in the tip region (which was not important for thin plate cases as
perforation occurs rather quickly) becomes equally important. As we shall demonstrate in
this paper, a better description of the tip region is required to completely represent the
loading on the projectile. In this work the main features of yawed penetration are identified
by studying the cavity shape evolution in two different target materials.

TEST SET-UP

Since it is very difficult to conduct direct ballistic experiments where the yaw in the
long rod can be precisely controlled, we chose to conduct the experiments in reverse ball-
istic. The Medium Caliber Launcher (MCL) at IAT was utilized for this purpose. This is a
7 meters long, 40 mm square bore electromagnetic launcher driven by the pulse power
obtained by capacitor banks. Details of this launch facility are described by Parker et al.
[3]. Due to the limitation of maximum kinetic energy obtainable by this research laun-
cher, we chose to study penetration behavior of copper rods into aluminum targets. This
combination holds similar density and strength ratios as Tungsten/Steel pair, and thus
should provide interesting insights for practical applications in addition to being useful
for identifying the underlying physical phenomena. The KJ armature commonly used for
launcher research was modified (see Fig. 2) to hold a 2" long, 1.5" dia projectile cylinder
made of aluminum.

The launch packages consisted of a 7075-T6 Aluminum armature pushing against a
lexan fore body which held the target (projectile) cylinder. To study the effect of target
strength on cavity evolution, two types of aluminums 1100 and 7075-T6 were used as ex-
perimental set up. The penetrators were 2 mm dia by 38 mm long copper pins (except for
one test) hung by wires in front of the muzzle from plastic rods attached to the flange of
the existing flight tube. To utilize the existing flange holes along with vertical and hori-
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Figure 1. Hydrocode simulation shows that
the velocity vector is re-oriented as a long
rod cuts a slot into the target. The velocity in-
serts are enlarged velocity vectors from adja-
cent cells.



zontal X-ray tubes the penetrator was
aligned to a plane 30 deg from vertical. As
a result, even though two orthogonal radio-
graphs were obtained, none represented the
true view. Even though a true view can be
obtained by combining the two orthogonal
views, no such attempt is done in this paper
except for two experiments where cavity
curvatures are measured for comparison
with theory. The penetrator was aligned to
the center of the gun by shining a laser
beam from the breech end. The X-rays
were triggered simultaneously (except for
normal penetration cases) by a contact-shorting pin placed in front of the copper pin, but
off set from the centerline to avoid any interference with penetration channel. The simul-
taneity was required as none of the radiographs produced a true view. The delay time was
estimated by projected velocity for the current pulse used. Fiducial wires made of tung-
sten were placed on the radiographs to act as reference coordinates. To charge the gun for
the experiments typically 10 X 1 MJ capacitor banks were used. All yawed tests were
conducted at 15-deg yaw and at a nominal impact speed of 1.5 km/s. 

TEST RESULTS

Table 1 depicts the test matrix. Fig. 4 summarizes the P/L evolution for all shots. Fig.
5 shows the normal impact pictures from shot #185 for Al-1100 target. For this test alone,
a 2 mm X 20 mm copper pin was used to avoid penetration depth getting close to the rear
surface. The X-rays delays were set at 20 µs and 55 µs after impact, at which the penetra-
tion depths were found to be 18 mm and 38 mm respectively. Using handbook values of
250 MPa and 30 MPa for the flow strengths of Copper and Aluminum respectively in Tate
model reproduces the penetration depths at the specified times fairly accurately. Similarly
Fig. 6 shows radiographs from shot #168 for normal impact and penetration into 7075-T6
Aluminum.

Figure 3. Experimental set up for the reverse ballistic tests in the EM gun.
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Figure 2. Launch package.



Table 1. Test matrix Figure 4. Evolution of penetration for 
all tests.

Fig. 7 shows the cavity shape evolution in Al-1100, and Fig. 8 shows the radiographs
for Al-7075-T6 rounds. From the radiographs the rod does not appear to rotate prior to
impacting the target. Examination of the radiographs from yawed experiment reveals that
most of the rod bends into somewhat circular shape inside the target except near the tip
where the cavity is larger. The symmetry of rod back-flow that was seen for normal im-
pact is clearly lacking in the yawed impacts. The larger cavity near the tip may either be
due to relative difficulty of penetrating accumulating debris near the tip, or due to asym-
metrical back flow of the mushrooming head. By comparing the radiographs it is evident
that 7075-Al exerts a higher lateral load on the rod than pure aluminum, as a result of
which the rod experiences larger deformation in the former, leading to reduced cavity cur-
vature and penetration. For the Al-1100 case, the lateral surface is undulated indicating
that back flow of the mushrooming material from the head region may be interacting with
the in coming material. Of course the possibility of a Kelvin-Helmbotz type instability
due to high speed sliding of fluid-type materials cannot be ruled out. This type of undula-
tion is absent for the 7075 Al cases. Thus strength has the effect of either reducing the ef-
fects of back flow or suppressing the aforesaid instability.

(a) Vertical X-ray, 19.7 µs after impact. (b) Horizontal X-ray, 54.7 µs after impact.

Figure 5. Normal penetration into pure aluminum (Shot #185).
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(a) Vertical X-ray, 34 µs after impact. (b) Horizontal X-ray, 58 µs after impact.

Figure 6. Normal penetration into 7075 aluminum (Shot #168).

In Fig. 9, we have plotted the true shape of the curved part of the rod (excluding the tip
region) from two identical experiments (#169 and #170) recorded roughly at the same
time after impact. A least square method was used to fit a circular arc through the data
points. It is clear that the rod does indeed deform into a circular shape. In the slot-cutting
model [1] we had assumed that the effect of lateral load on the rod was to reduce the late-
ral velocity component and provide the centrifugal force to turn the velocity vector. It was
shown from computational results and comparison with experimental data [1,2] that the
deformation of the rod was primarily inertial. Now, if the deceleration of the lateral com-
ponent is ignored, and it is assumed that the lateral load causes a circular motion of the
rod material, the ensuing radius of curvature can be calculated as follows. Considering a
differential element of length dx, the lateral force exerted on it is F=Pc·D·dx where Pc is
the cavity expansion pressure typically given by [4] Pc=a+bρtVn

2, where a is quasi-static
cavity expansion pressure equal to ( )[1+ln( )] for a elastic-perfectly plastic
type materia with flow stress of Y and Young’s modulus of E, and b is a material specific
constant which are approximately 1.8 for aluminum, Vn is the normal component of the
velocity. The mass of the element is m=πD2ρdx/4. Thus the radius of curvature is given
by R = mV2/F = (π/4)ρPDV2/(a + bρtVn

2).

E / √3YY / √3
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(a) Horizontal X-ray, 20.3 µs after impact. (b) Vertical X-ray, 20.3 µs after impact. 

(c) Horizontal X-ray, 31 2 µs after impact. (d) Vertical X-ray, 31.2 µs after impact.

(e) Horizontal X-ray, 54.6 µs after impact. (f) Vertical X-ray, 54.6 µs after impact.

Figure 7. Yawed penetration into pure aluminum.

For V = 1500 m/s and yaw angle of 15-deg, R turns out to be 13.7 mm. The experi-
mental values of the curvature are 11–12 mm, which are close to but smaller than the va-
lue for pure circular motion. Additionally, the center of the circular arc in Fig. 9 lies at
(–2.5 mm, 12.4 mm) for shot # 169, and at (-1.87 mm, 10.7 mm) for shot #170. The line
extending from the origin to the center of the circle makes an angle of 9.9 deg, and 11.4
deg for shot # 169 and #170 respectively. Under ideal conditions (pure circular motion)
the radius vector to the origin should be perpendicular to the original length vector of the
rod, and thus the included angle between the radius vector and the target surface should
be equal to the yaw angle (= 15 deg). There are several possible explanations for the diffe-
rences which could not be ascertained unequivocally using the available data. The rod
may stretch as a result of circular motion or the axial velocity may reduce leading to a
smaller value of R, and offset the lateral deceleration. Any change in diameter could
change the curvature, but any change in diameter could not be positively identified in the
radiographs due to lack of enough contrast. For the high impact velocity and the short
time of penetration, axial velocity reduction should be extremely small.

1286

Terminal Ballistics



(a) Horizontal X-ray, 10.6 µs after impact. (b) Vertical X-ray, 10.6 µs after impact.

(c) Horizontal X-ray, 19 µs after impact. (d) Vertical X-ray, 19 µs after impact.

(e) Horizontal X-ray, 31.5 µs after impact. (f) Vertical X-ray, 31.5 µs after impact.

Figure 8. Yawed penetration into 7075 aluminum.

Finally, from the radiographs it appears
that for yawed rod case, increase of pene-
tration depth is complete much earlier
compared to normal penetration case, even
though slot lengthening may continue for a
longer period. 

CONCLUSION

The experimental radiographs from the reverse ballistic experiments indicate that
most of the cavity is in form of a circular arc, except near the tip region. The radius of cur-
vature measured turned out to be very close to the theoretical value indicated for pure cir-
cular motion. The cavity curvature was larger for Al-7075 than Al-1100 presumably due
to higher target strength. The contact surface was undulated for Al-1100 targets, which
was not the case for Al-7075 targets indicating the fact that higher strength probably sup-
presses the instability. The portion of the long rod out side of cavity did not appear to ro-
tate with time.
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Figure 9. True cavity shape appears to con-
form a circular shape.
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