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A study isin progress which seeks to decoupl e the interaction between the pro-
jectile and the composite transparent armour into constituent parts:

— parameters which induce damage to the penetrator

— the effect of penetrator damage on subsequent penetration

— mechanismswhich confer penetration resistance to the absorbers.

This paper reports aspects of thefirst stage of the programme, which character-
ises the damage induced in the projectile (7.62 mm Armour Piercing, AP) asa
function of: target impedance, impact stress pulse length, impact velocity and
target geometry.

Target materials have been chosen to simulate a range of impedance (Z) from
15t0 38 MPam! sto represent those applicable to more traditional transparent
armour materials and high performance variants being devel oped.

Significant differences in fracture morphology were observed. The effects of
varying impedance, impact stress pul se and target geometry are discussed.

INTRODUCTION

Increased performance of transparent armour is required for lightweight armour pro-
tection for vehicles and helicopters. Traditional armour configurations entail afront glass
layer (often laminated soda-lime glass), backed by a polymer layer which absorbs the
energy from the projectile and failed glass by plastic deformation. A method being ad-
dressed for improving the performance of such armour isthe introduction of non-traditio-
nal materials into composite lamellae [1,2]. High mechanical impedance materials such
as polycrystalline glass ceramics, sapphire, and magnesium aluminate spinels are being
introduced into the composite array to induce damage to the projectile. A fractured pro-
jectile is much easier to arrest than a projectile penetrating in a rigid body mode. Con-
struction options may inclnde layers of two or three material types. They may also include
laminations within alayer type. Ballard [2] defined athree layer armour with transparent
ceramic/glass/polycarbonate to defeat a 7.62 mm AP projectile. The front layer of high
impedance material to initiate damage in the projectile, a second layer of glass to slow
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and possibly further damage the projectile and the polymer layer to arrest all the damaged
particles.

This paper isfocussed primarily on aspects of damageinduction in hard steel 7.62 mm
armour piercing projectiles during impact on high impedance materials. In particular the
resulting damage morphology and terminal ballistic effects resulting from changesin im-
pedance, stress pulse length and lamination configurations have been studied. Opaque
anal ogue materials have been used to simulate high impedance, and high cost, transparent
material s such as aluminium oxynitride [3] or magnesium aluminate spinel [1].

This work forms the first part of alarger programme which considers, in addition to
the penetrator damage analysis, the effect of initial damage on subsequent arrest in stand-
ard glass layers, the intrinsic energy absorption characteristics of the transparent armour
and the mechanisms of arrest of the damaged material by the polymer backing layer.
These aspectswill bereported el sewhere.

Sintox FA alumina (SFA) (95%) manufactured by Morgan Matroc, UK has been used
to simulate sapphire and aluminium oxynitride. The glass absorbers used were Soda-lime
glass (SG) and an opague lithia crystalline ceramic (identified as LZ1) to simulate the
transparent ceramic with similar composition. Table 1 liststhe key properties of materials
used in the programme.

Table 1: Materialsdata

Material Density Impedance Hardness Young’s Shear Mod
p Z Mod, E G
(kgm™) (MPa m’'s) (Hv) (GPa) (GPa)
Sintox FA (SFA) 3694 36.5 1100 308 124
Soda-lime glass (SG) 2510 14.7 540 74 30
Glass ceramic (LZ1) 2334 I5.5 - 95 40
Polycarbonate (PC) 1180 3.2 6 2
EXPERIMENTAL SETUP

The 7.62 N PPl Armour Piercing (AP) hard steel Anthena round was chosen as the
standard projectile. The core, whichispartially brassjacketed (Fig. 1), isof high hardness
steel ~830 Hv3g and hasaweight of 5.8 g. A full service charge yielded amean impact ve-
locity of 826+3 ms' with amuzzleto target distance of approximately 12 m.

The round was fired from a 7.62 mm Browning proof barrel. Velocity was measured
using light screens set at 4 m before impact, and adjusted for retardation to calculate the
impact velocity. The glass and ceramic targets had a ground, flat finish and were simply
clamped together. Flash X-ray was used to measure the residual velocity of the projectile,
and the physical condition immediately after perforation of the target. The projectile and
the debris were soft recovered in sand to allow the characterisation of projectile damage,
which included measurement of the projectile core mass remaining intact.
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DAMAGE MORPHOLOGY

Standard low impedance glasses, such as soda-lime glass usually impart little damage
to hard steel AP rounds. The projectiles tend to pass throngh in arelatively undeformed
state. The glass absorbs kinetic energy simply by increasing drag on the projectile. The
role of the high impedance materias is to induce damage, breaking the round, possibly
with some erosion on the front surface before penetration [4], spreading the load to de-
creasethelocal pressure on the absorber.

We initialy studied the effects of front face impedance and hardness on the morpho-
logy of penetrator damage by employing two types of high impedance material, silicon
carbide (Z=39.5 MPa m'1s and Hv=2400) and alumina SFA (Z=36.5 MPa m'ls and
Hv=1100). The impedance of each is similar but silicon carbide has considerably greater
strength and hardness. The added val ue of extra hardness (in addition to the increased im-
pedance) is not clear but may result in increased deviatoric strength and higher KE ab-
sorption. In practice, both silicon carbide and alumina produced similar, significant in-
creases in damage compared to the lower Z glasses. This paper will therefore consider
only the difference between high and low Z materials. Therole of hardnessin the high Z
group will be dealt with elsewhere.

The captured rounds from shot 104, impacting alow impedance LZ1 (10 mm) target
and shot 118 impacting a high impedance SFA (8 mm) areshownin Fig. 1. Thereisavery
clear differencein fracture morphology. For LZ1 thetip isbarely blunted compared to the
blocky type fracture which has reduced the residual core massto ~40% of the original va
lue.

Both target interactions caused fracture across the diameter of the core suggesting
spall or bending stresses.

A simple 1-D analysis based on the relative impedance of the targets and the steel
round impacting at 850 ms'! would indicate the impact stress induced in the steel core
when impacting SFA would be greater than 40% higher than when impacting LZ1. In
practice, the geometry of the impact, damage, and plasticity will alter this figure. How-
ever, the impact stress is considerably greater for the high impedance material. It would
be desirable to determine experimentally the impedance value at which point there is a
transition in the characteristic fracture morphology. Unfortunately, no materials were
available with intermediate impedance which also have sufficiently high strength to
impart intermediate impact stresses.
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Figure 1. The effect of target impedance on round damage

We considered the mechanisms which may be controlling the characteristic damage
morphology. Does the impact stress pulse cause incipient damage, as it travels down the
projectile, which will be activated as it passes through the lower impedance glass absor-
ber layer? If thisis the case, how much of the high impedance layer is required to cause
thisimpulse effect? Does the blocky fracture and erosion process occur only during pas-
sage through the high impedance layer? We carried out a parametric study in which the
relative levels of stress pulse magnitude and duration were varied.

PARAMETRIC STUDY

A series of impact testswere performed in which the impact stress pulse was varied by
using a high impedance (Z) front layer ranging from 0 to 6 mm with lower impedance ab-
sorbing layers of different thickness amd material. These layers were backed with 9 mm
of polycarbonate. The velocity ratio, R, (residual velocity, VR / impact velocity, V;) has
been plotted as a function of high impedance layer thickness for the various absorbing
layers.

Figure 2 clearly showsthe efficacy of high Z front layers. For targets without ahigh Z
layer, the velocity ratio reduced from 0.98 to 0.82 when the soda glass thickness was in-
creased more than threefold from 8 mm to 25.4 mm. Assuming alinear reduction in velo-
city ratio with thickness, the decrement rate, dR/dt = —0.009 mm-1. When the high impe-
dance SFA layer was used, the same decrement that took a threefold increase in SG
thickness was achieved by adding only 2 mm of SFA. Assuming a linear reduction in
velocity ratio with thickness over the 6 mm experimental range, the decrement rate
dR/dt=-0.16 mm-1.
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Figure 2: The effect of high impedance Figure 3: Partitioned front high z layer
layer (SFA) thicknesson velocity ratio (R)  experiments at constant path length and
for various absorber configurations. impact velocity. Thelast number refersto
the 6 mm SG backing, the preceding
number(s) refer to the thicknessin mm
of the SFA layer(s).

The areal density for defeat of the 7.62 mm Anthena AP round for the configuration
6 mm SFA/ 8 mm soda-glass’ 9 mm PC is 53 kg m™2. This compares with an areal density
of >100 kg m-2 for conventional systems containing only low Z layers. A system contain-
ing the aluminium oxynitride for which SFA is a simulant may even exceed this perfor-
mance.

TheLZ1 absorbing layer did not perform significantly differently to the SG.

Figure 2 shows a monotonically decreasing velocity ratio (R = V,/V) as the high Z
material thicknessincreases. There appearsto be insufficient evidence here to support our
initial hypothesisthat acritical value of stress amplitude and stress duration is required to
initiate fracture in the projectile. Although the length of the stress pulse imparted to the
projectile changes with the thickness of the front, high Z layer, so does the total thickness
of high Z material. In order to decouple the effects of stress pulse length and thickness of
high Z layer, afurther investigation was undertaken.

IMPACT PULSE LENGTH

In order to measure the effects of changing the impact induced stress pulse length in-
dependently of the thickness of the high Z front layer, we used different layered configu-
rations of the sametotal thickness. Three configurations were used:

i) 2mmSFA/4mm SFA/6mm SG
ii) 4mm SFA/2mm SFA/6mm SG
iii) 6 mm SFA /6 mm SG.

Separation of the front high Z layers was effected using a 40 um polyethylene layer.
This ensured an effective impedance interface between the 2 mm layer and the 4 mm
layer, and resulted in the initiation of stress pulses of different duration. Assuming alon-
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gitudinal wave speed of ~ 10 km s-1 thiswould equate to impact pulse lengths of 0.4, 0.8
and 1.2 usrespectively. Theimpact vel ocity was constant at 826 ms-1.

The different partitioning configurations had a significant effect on the damage indu-
ced in the projectile. Thisis seen in Figure 3 as reducing residual energy as the front SFA
layer increased from 2 to 6 mm (with the total SFA thickness remaining constant). The
monolithic, 6 mm front block of SFA resulted in apenetrator residual energy lessthan half
that for a2 mm front block (333 Jcompared with 716 J). Thisreductionin residua energy
was due to both areduction in penetrating core mass and areduction in residual velocity.

To aid understanding of the effect of the layering on the stress pulse formation in the
projectile a simplified problem was simulated numerically using the Lagrange code
AUTODYN in a 2-D mode. The problem was set up as a 100 mm long, 6 mm diameter
rod impacting targets of the same partitioned configuration (2/4, 4/2 and 6 mm) as descri-
bed abovefor the front, high Z layer. In this case the backing of SG was omitted. The out-
put, Fig. 4isthe principal stresshistory in the axisdirection of therod at aposition 25 mm
from the impact surface. The rod was treated as a perfectly elastic solid and the SFA was
modelled using a Johnson-Holmquist-2 (JH2) [5] ceramic model calibrated for SFA. A
polymer model was used for theimpedance break material.

Although the rod was modelled with flat ends, the calculated stress pulserisetimeis
quite slow, ~1.5 ps. Thisis a significant time when considering the range of theoretical
pulse lengthsis 0.4 to 1.2 ps. However, slight increments in pulse length are determined
as the front layer thickness increases. More significant, however, is the increase in the
magnitude of the stress pulse asthe front layer thicknessisincreased.

The decrease in stress pulse magnitude with decreasing front face thickness (total
thickness of high Z front face remaining constant) is due to earlier initiation of damage to
thelayer by earlier reflection of arelease wave at the impedance discontinuity. This redu-
ces the strength and the effective dynamic impedance of the target material. As the front
layer increasesin thickness, the time for the damage front to return from the back surface
increases and arelatively higher proportion of the material ahead of the penetrator is still
compressed and consequently strong. This effect has also been observed in thicker lami-
nated targets[6].
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Stress /GPa
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Figure 5: Numerical simulation of the stress pulse history in the schematic rod, impacting
the partitioned SFA targets at avelocity of 860 m/s.
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The increased performance of the thicker front layer seems therefore to be due to in-
creased stress amplitude in the penetrator and not to increased stress duration, as origi-
nally surmised.

CONCLUSIONS

A parametric study has been performed investigating the damage morphology of hard
steel 7.62 mm AP projectiles through impact on simulants of transparent armour systems.
The effects of target impedance, hardness and geometry were studied.

The degree of damageto the APround and the morphology of thisdamageis primarily
influenced by the dynamic deviatoric strength of the target layers. When a threshold tar-
get hardness is exceeded damage isinitiated in the penetrator immediately adjacent to the
target interface. Thisleadsto fracture and erosion.

The effect of the characteristics of the impact stress pulseinitiated in the projectile has
been assessed by experiment and numerical simulation. The effects of pulse shape were
found to beminimal.

The effective dynamic deviatoric strength of ceramic/glass layers is dependent on
layer thickness. This is due to damage originating from the back surface of the layer,
releasing constraining pressure. Thisrelease occurring earlier for thinner layers.

Triple layered systemsincluding a high impedance front layer, alow impedance glass
absorber layer and a polymer backing layer have been investigated. A systematic study of
simulant systems indicates that areal densities of practical, transparent armours may be
reduced to 50% the value of traditional low impedance glass systems, by the incorpora-
tion of relatively thin high impedance front face layers.
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