 Tableof Conterts TB35

19th International Symposium of Ballistics, 7-11 May 2001, Interlaken, Switzerland

SHOCK REDUCTION POWER OF DIFFERENT MATERIALS IN
PLATE TARGETS

H. Kaufmannl, T. Rothacher2, G. Rubin2 and R. Meier3

1 Swiss Ordnance Enterprise Corp., Allmendstrasse 86, 3602 Thun, Switzerland
2 Defence Procurement Agency, weapon systems and ammunition test center,
Feuerwerkerstrasse 39, 3602 Thun, Switzerland
3 Swiss Electronics Enterprise Corp., Sauffacherstr. 65, 3000 Bern, Switzerland

Presenting aspects of the specific deformation behavior of steel and aluminium
alloys under blast load this paper contributes new data to the discussion about
efficient protection measures. For this purpose two newly developed observa-
tion methods for highly dynamic movements have been applied. Firstly, acce-
leration data have been measured by Piezoresistive Accelerometry and
secondly displacement data have been measured by Laser Assisted Reflecto-
metry.

INTRODUCTION

The vulnerability of the operation staff in vehicles under detonation threat is strongly
dependent on the shock reduction power of the chassis. Since the human body bears only
relatively smooth momentum alterations [1], protection measures against blast mine det-
onations must reduce the momentum transfer into the crew compartment tremendously
[2,3]. This can be achieved if the kinetic energy of the detonation gasesistransferred into
other energy forms. With respect to operation boundary conditions the most efficient way
isto change kinetic energy into deformation work and dissipation heat. Further, practical
protection devices against bottom mines have to be thin in order to guaranty the necessary
clearance. Consequently, the protection device must be based on materials with a poten-
tial for maximum dynamic deformation work. The aim of this research activity is there-
foreto
— find those material s which consume maximum energy at minimum dynamic deforma-

tion.

— measurethe surface accel eration of platesfor vulnerability investigations
— develop fieldable methodsfor the analysis of dynamic deformationsin prototypes

Going for the first aim we observe the dent formation in plates of the same areal den-
sity during explosive charge detonation. Dueto the different densities of the chosen mate-
rials the test specimen will have different thickness. We prefer constant areal density to
constant thickness since blast protection primarily deals with inelastic collision. And
therethe massisacrucial parameter. We reduce the examination zone to the centre where
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the dent forms. Measuring its one-dimensional movement perpendicular to the original
plane we then cal culate its deformation work per area unit normal to the plate surface (Fi-

gurel).
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Figure 1. Cross-sectional view of the Figure 2: Pressure and dent height
strainin the dent of adynamically evolution versustime.

deformed plate.

Thisisadimension figure for the detonation energy fraction which causes the defor-
mation of the plate. And its inverse value is a dimension figure for the shock reduction
power of the plate. The calculation of the deformation work W is based on the following
approach. Measuring the one-dimensional movement of the dent top surface in function
of time, we know its path, speed and accel eration. Conseguently the deformation power at
acertaintime can bewritten as

W=FR-X (1)
with Fg resulting from the surface accel eration and the areal density min the dent.
FR=m-% 2

For the deformation work performed up to an interesting state the deformation power
hasto be integrated numerically up to the corresponding time.
tsilp ts.tp
Wsp= [Feoiedi=m [¢i-di €)
0 0

In this study the integration was done up to two important points. Once up to thetime
of maximum surface speed (tg) and twice up to the time of the dynamic dent height (tp,
minimum dent height). These two extremes cover the terminal ballistically mostly affect-
ing states of the plate (Figure 2, [2], [3], [4], [5]).

For the second goal we need precise accel eration data of the different plates. Based on
the statistically confirmed interrelationship with the endurance time [1] they will serve
for vulnerability considerations of personal in vehicles. Summing up, we need accurate
and repeatable methods for the observation of highly dynamic movements. For this pur-
pose we use the following two new methods. Thefirst method, the Piezo Resistive Accel-
erometry (PRA) isdirectly registering the accel eration of the plate centre. The second me-
thod, the Laser Assisted Reflectometry (LARY) isregistering the path length between the
plate centre and the beam source. We use PRA to get precise accel eration data during the
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detonation phase and to confirm the calculated acceleration data from LARY. Subse-
quently the deformation work Wgand Wp is calculated based on LARY data. Being very
robust these two methods also accomplish the third goal alowing the scientist to collect
data under fieldconditions.

EXPERIMENTS

During thistest series, executed in the Detonics Laboratory Hondrich [6], specimen of
5 different metals are investigated. 3 steel qualities, Standard steel (StS), General purpose
construction steel (GPCS) and high hardness armour steel (HHA) plus 2 aluminium qua
lities, standard aluminium (StA) and high-tensile aluminium (HTA).

Test plate

500 kg 500 kg 700 500kg | 500 kg

Explosive load o
ES

_—

7. //7//// 7 /./ /// i //
Figure 3: Schematic diagram of thetest arrangement.

The specimen are square plates of 700 mm extension. Whereas the steel plates have a
thickness of 10 mm the one of aluminium is 30 mm. The specimen are fixed between two
rectangular steel frames with a circular opening of 500 mm (Figure 1 and 9). The steel-
frame isfixed to a steel construction and the whole arrangement is loaded with four con-
crete cuboids of 500 kg each. A plastit load of 500 g (explosive gelatine) is placed under
the plate having adistance of 300 mm between itstop and the specimen.

The charge is hold with a wooden frame 860 mm above the concrete basement. The
plastit mass has a cylindrical shape with a height/diameter ratio of 1/3 and is electrically
ignited in the centre of its bottom surface. The two selected measurement methods are
applied separately for each material in order to avoid interactions.

Piezeresistive Accelerometry (PRA)

There exist a broad range of different sensors to measure accelerations. But the acce-
lerations occuring on a protection plate during an explosion are mostly much too high to
measure with commercially available sensors[2], [7]. These have to be modified to mea-
sure the enormous accelerations without any damage. In our method we use a 60000 g
piezoresistive accel erometer (Endevco 7270A). Thesignal of this sensor isamplified by a
miniature amplifier that together with the sensor and a steel protecting case form the mea-
surement unit (s. Fig. 1). The measured signals are visualized and stored with an oscillo-
scope (LeCroy).
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Figure 4: Measurement unit mounted Figure 5: Complete measurement unit

on atest plate. (above) and interior parts-embedded
amplifier and fitting rings (below).
Withitssteel casingsthe whole unit weighs
about 330 g and has adimension of
40 mm x 40 mm.

Similar to the technique in [8] undesired high frequencies which could destroy the ac-
celerometer are mechanical damped by different layers of specia rubber and synthetic ma-
terial. The sensitive electronic parts are additionally embedded in athree-component epoxy
resin. Infirst experiments different loads (65 up to 1000 g) of plastit areignited at different
distances (100-400 mm) beneath an 8 mm steel plate. In this configuration maximum acce-
lerations up to about 2 Mio m/s? are recorded without damaging the measurement unit. To
get information about the velocity the mathematically filtred accel eration dataisintegrated,
second integration leadsto the distance. Fig. 2 showstypically obtained results.
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Figure 6: Detected and calculated results caused by the detonation of 1 kg plastit at
500 mm distance below an 8 mm standard steel plate. 8) measured accel eration, b) velocity

infunction of time and c) resulting distance.
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Figure 7: Schematic diagramm of the LARY method

Figure8: Glassfibersof theLARY-method FIGURE 9: Wooden cage for the exclusion

mounted on asteel yoke. of disturbing gases and detonation flash.
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Figure 10: Detected Intensity (upper curve) and calculated dent height (lower curve)
caused by 500 g plastit at 300 mm distance below a GPCS plate.

Laser Assisted Reflectometry (LARY)

One main disadvantage of measurement methods which are applied directly coupled
to the moving part is their limited mechanical stability under load. Indirect measurement
methods on the other hand often demand a stable and clean environment. To prevent this
boundary conditions we have devel oped an indirect method called L aser Assisted Reflec-
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tometry (LARY) for outdoor experiments[9]. LARY determinesthe one-dimensiona dis-
placement of moving surfaces. This is based on the on-line analysis of the intensity of a
laser beam reflected on the examined surface. For this purpose the light emission and
light reception must be located as close as possible to each other. The emitted laser beam
must be directed perpendicularly to the examined surface (Fig. 7). The displacement of
the surfaceis calculated based on the well known fact that the reflected radiation intensity
isinversely proportional to the second power of the distance from the reflector. The laser
light has a wavelength of 820 nm and is emitted by a diode Laser of 15 W output. The
emitting and receiving glass fibers are parallely mounted on a steel yoke at a distance of
65 mm over the plate center (Fig. 8). We exclude the detonation flash and afterflaming by
means of awooden cage (Fig. 9). Exemplary, Figure 10 shows the intensity signal detec-
ted over aGPCS plate (upper curve) and the cal cul ated height of the dent.

RESULTS
120 - 50 -
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Figure 11: Figure 12:
Deformation work of thedenttopat max.  Dynamic dent height versus observation
surface speed (upper values) and at time. Below, the remaining static dent
dynamic dent height. height isindicated.

Data collected by both, the LARY and the PRA method result in asimilar evolution of
acceleration, speed and path. They properly registrated data during the detonation process
and up to 1 ms. Above 1 ms data suffer in some cases from artefacts of the test ar-
rangement. In case of PRA the sensor is limited to lower accelerations than appearing in
caseof HHA, StA and HTA after 1 ms. Most probably thisis going back on the loosening of
thefixing. Equivalently, LARY suffersfrom the same effect. The strong movement of the
arrangement is e.g. displacing the glass fibre from the detector after 34 ms. The defor-
mation work per area unit Wgand Wp shown in Figure 11 clearly increases with increas-
ing dent height. Interestingly, the aluminium qualities have the lowest deformation work
at lowest dent height of all materials. As already mentioned, the materials with low dyna-
mic deformation work cause a dramatic increase of the stress in the fixing of the speci-
men. Thisis quite consistent with the fact, that the detonation energy below the plate re-
mains constant. Another important effect isthe trend for increasing deformation time with
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increasing dynamic dent height (Fig. 12). Typical peak values of the dent acceleration are
200 000 g and —150 000 g during intervals of the order of magnitude of microseconds.
The acceleration dala collected with PRA method will be used for vulnerability consider-
ations.

CONCLUSION

The tested metals do not accomplish maximum deformation work at minimum defor-
mation. The dynamic deformation work and the time consumed obviously increase with
decreasing hardness.

The aluminium experiments prove the shock reducing effect of increasing thickness.
Thisissimply due to the fact that the bending height fax isinversely proportiona to the
plate thicknesst to the second. That’s why, the weakening effect of the lower Youngs Mo-
dulusE isclearly exceeded by the threefold thickness compared to steel.

Y
s = P

— 4
R @

For the investigated metals high shock reduction power is obviously coupled to high
stiffness. And this causes higher stress of thewhole chassis.
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