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GLASS CERAMIC ARMOUR SYSTEMS FOR LIGHT ARMOUR
APPLICATIONS

1. Horsfall

Engineering Systems Department, Royal Military College of Science,
Cranfield University, Shrivenham, Witshire, SN6 8LA, UK

This paper describes an experimental eva uation of lithium-zinc-silicate glass
ceramics when used as the strike face of an armour system. It is shown that
against soft cored 7.62 mm rounds (lead or mild steel cores) glass ceramics of -
fer protection at an areal density which is equal to or better than alumina faced
systems. The lithium zinc silicate system has a relatively low hardness (Hv
600) when compared to conventional ceramics such as alumina (typically
Hv1300-1500). Consequently the performance of the glass ceramic system
against hard cored projectilesis poor.

INTRODUCTION

Glass ceramics are a class of inorganic materials which may be formed from the melt
asaglass from which acrystalline phase is then produced by a suitable heat treatment. In
the glass state the material isformable and castable allowing complex shapesto be easily
manufactured. Upon heat treatment afully crystalline structure is produced that is gener-
aly stronger, tougher and stiffer than the base glass. This provides arelatively cheap me-
thod for producing a ceramic tile suitable for armour applications.

In armour applications glass ceramics have been used as the frontal part of a conven-
tional disrupter-absorber system with a composite layer being used as a backing [1]. The
primary design driver for this has been the lower density of some glass ceramic composi-
tions compared to more conventional ceramic armour materials. However the ability of
glass ceramics to easily form complex shapes and the possibility of varying mechanical
properties by heat treatment offer potential gains in armour performance. In this paper
ballistic and mechanical properties are determined for a glass ceramic material in various
heat treatment conditions. This potentially offers a possibility for isolating the contribu-
tions of individua mechanical and physical properties towards ballistic performance
without the step change in al properties that is accomplished when comparing, for
instance, oxide and carbide materials.
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HEAT TREATMENT EFFECTS

The glass ceramic used in this work is based upon the lithium zinc silicate system
(LZ1, manufactured by Ceramic Development (UK) Ltd). The glass was initialy cast to
shape astiles of approximately 9 mm thickness. It was then subjected to a crystallisation
treatment. This consisted of 1hour holds at 450°C and then 500°C followed by a 1 hour
ramp up to 800°C, which was held for 2 hours. Samples were prepared from material that
had been interrupted at various points through the heat treatment. These were used for
mechanical testing, scanning electron microscopy and X-ray diffraction studies. Com-
plete tilesin similar heat treatment states were bonded to 9.5 mm thickness GFRP bac-
king plates (Armadillo Ltd CRA15) and subjected to ballistic testing.
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Figure 1: X-ray diffraction spectra of lithium zinc silicate glass ceramic during heat treat-
ment, (a) in the glass state after spinodal decomposition, (b) during initial nucleation
phase, () after nucleation of main crystalline phase and (d) after full crystallisation.

During the initial part of the ramp from 500°C to 800°C the glass undergoes a spino-
dal decomposition into two glass phases, the X-ray diffraction spectra (Figure 1a) shows
no crystalline phases present. Within the first 30 minutes of the ramp to 800°C (corre-
sponding to a temperature of 650°C) a nucleant phase is formed. This shows severd ill-
defined peaks (Figure 1b) and can be identified as LiSiOz. As the temperature increases
rapid changesin crystal phase take place and amajor phase of Li»SioOs isformed whilst
the original nucleant phase is consumed (Figure 1c). Holding at the final temperature for
2 hours alows further growth of this main phase at the expense of amorphous material
and sometransient phases (Figure 1d).
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A number of mechanical and physical properties were measured during the progres-
sion of the crystallisation process [2]. Hardness was measured using a Vickers pyramid
indenter at aload of 5 kg, and fracture toughness was determined by the indentation me-
thod [3]. Elastic modulus was deduced from longitudinal wave velocity measured by
ultrasonic time of flight. The unconstrained compression strength was measured using
sguare cross section specimens 3 mm x 3 mm with alength of 10 mm which were crushed
in an instrumented drop tower at velocities of 1.2 ms™. Table 1 shows data for the evolu-
tion of various mechanical properties during heat treatment and comparative datais given
for a 95% alumina using the same test methods. The density of the glass ceramic isacon-
stant 2780 kgm2 throughout the heat treatment stages.

Table 1: Mechanical properties of lithium zinc silicate glass ceramic at various stages of
heat treatment compared to a 955 alumina.

Heat Treatments Hardness | Fracture Tensile Compressive | Elastic
(Cumulative from | (Hv) Toughness | strength srength Modulus
top) (MPam*?) | (MPa) (MPa) (GPa)
None 430 1.86 58 733 63

1hr @450°C 593 3.44 30 660 64

1hr @500°C 825 3.53 129 1080 63
30min into ramp 769 56 1030 65

Top of ramp 800°C | 757 3.86 153 1350 80

2hr @800°C 915 3.72 200 1535 77

95% Alumina | 1500 | 3.86 | 190 | 1419 | 340

Aninitial ballistic trial used 5.56x45 mm SS109 projectiles against tiles 9.5 mm thick-
ness bonded to a9.5 mm GFRP. However for thetiles heat treated to the later stagesit was
found that the ballistic limit velocity exceeded the ammunition performance. Therefore a
second trial was carried out in which a similar procedure was followed except that a 6.5
mm Kevlar backing with 7.62x51 mm ball and 7.62x51 mm P80 AP projectiles as the
threat.

Figure 2 shows the ballistic limit velocities for each of these projectiles as a function
of total heat treatment time. It can be seen that for the SS109 threat there is a significant
increase in ballistic limit velocity after 2.5 hours corresponding to initial nucleation of
crystal phases. A further increase is seen after 3 hours with tests using the 7.62 mm ball
ammunition. This corresponds to the formation of the main crystal phase and the armour
system exceeds the maximum performance of the SSS109 round from 3 hours onwards.
The ballistic performance does not appear to increase for heat treatment beyond 3 hours
and shows a significant decline against the 7.62 mm AP threat. However it should be no-
ted that the performance of the glass ceramic against thisround isvery poor in all heat tre-
atment conditions.
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Figure 2: The effect of heat treatment of lithium zinc silicate glass ceramic on ballistic
limit velocity.

The appearance of the tiles fractured in impact changed markedly according to heat
treatment. In the glass, the impact site was surrounded by closely spaced radia cracks at
intervals of only afew degrees. The impact site was completely pulverised and there was
extensive circumferential cracking. Fully crystallised tiles show much more limited radial
cracking at intervals of 20-30° and no circumferential cracking apart from the conoid fai-
lure at theimpact point.

COMPARISON WITH ALUMINA

Comparison trials were carried out between the glass ceramic and a 95% alumina
using 7.62x51 mm ball and 7.62x51 mm AP P80 projectiles[4]. The Depth of Penetration
(DoP) technique as described by Anderson [5] was used to measure the performance of
the armour materials. In this method atest projectileisfired into alarge block of metal of
density pg and the depth of penetration Pg is recorded. A ceramic tile of thicknessts is
then placed against a similar block and the residual depth of penetration Py of a similar
projectileisrecorded. From these measurementsit is possible to derive number of indices
of ceramic performance. Thecritical ceramic tile thickness (tqit) to just defeat the projec-

tile can be calculated from
t-P.
tcrit =<8 _ (1)
(PB - PR)

Tiles of the two ceramic materials were attached to 75 mm cubes of aluminium 7018,
which was used in an overaged stete to give a Vickers hardness of Hv 70. The tiles were
attached using a polyurethane elastomeric adhesive (Sikaflex 221), and a single layer of
glass cloth was applied over the ceramic tile with an epoxy binder/adhesive. The alumi-
nium cubes were struck with both projectile typeswith no tile present or with 4, 8, 12, and
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13 mm glassceramic or 1,3,7 and 10 mm aluminatiles on the front face. After the test, the
blocks where sectioned through the centre line of the resulting cavity in order to measure
theresidual DoP.

Figure 3 shows the effect of tile thickness upon DoP. The data for individual testsis
plotted as open symbols with trend lines whilst the mean critical tile thickness according
to equation 1 isindicated by the filled symbols on the x-axis. Against the 7.62 AP projec-
tile the glass ceramic tiles have a very poor performance with a 28 mm thickness tile
being calculated to just stop the projectile. This compares with only 11 mm thickness of
aluminabeing required against the same threat. However against the 7.62 mm ball threat
the glass ceramic tile needsto be 9.8 mm thick compared to 8.7 mm for the alumina.

In a second series of comparison the Vg balistic limit velocity was measured for
95% alumina or glass ceramic tiles when bonded to GFRP backing panels of 9.5 mm
thickness[6]. In addition to conventional flat tiles some glass ceramic tileswere produced
with ridged faces [7]. The ridges were 5 mm deep with peek and trough angles of 90° so
that the faces were inclined to the plane of the armour by 45°. Three types of ridged pa-
nels were used: 9.5 mm (maximum) thick with ridges to the front, 12.5 mm (maximum)
thick with ridges to the front, and 13 mm (maximum) thick with ridges on both sides. The
first type was tested against the SS109 ammunition whilst the latter two types were tested
against 7.62 P80 APammunition.
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Figure 3: DoP results for 7.62 ball and 7.62 mm AP projectiles against glass ceramic and
auminatargets. Filled symbolsindicate the mean cal culated critical tile thickness.

Figure 4 shows the ballistic limit velocity for all these tile types when tested with
7.62 mm AP and 5.56x45 mm SS109 projectiles. The glass ceramic tiles show little re-
sistance to the 7.62 mm AP projectile with only marginal increase in the ballistic limit
velocity with increasing areal density. An increase in areal density from 45 kgm™ to
59 kgm? (7 mm to 12 mm tile thickness) produced an increasein ballistic limit of only
43 ms-1. In some cases the penetrator was recovered and was found to have no appre-
ciable erosion of its tip. The alumina faced armour had a ballistic limit velocity of
825 ms'! and only small fragments of the penetrator were recovered. However against
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the SS109 projectile the glass ceramic armour was only marginally poorer than the
alumina.

The effect of casting aridged surfaceinto only the front surface of thetileismarginal.
However using a corrugated tile with ridges on both faces produces a significant increase
in ballistic performance. This configuration of the glass ceramic tile started to approach
the performance of aplain duminatilein tests with the 7.62 AP projectile. It was a so no-
ted that projectiles penetrating the ridged tiles often showed very large deflections in
flight path upon exit.
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Figure 4: Ballistic limit velocity datafor glass ceramic (open symbols) and aluminafaced
(filled symbols) systemstested with 7.62 mm APand 5.56 mm SS109 projectiles.

SUMMARY

During heat treatment from the base glass to the fully crystallised condition the ball-
istic limit velocity of the glass ceramic isincreased by approximately 100 ms™. Most of
the change occurs during the early part of the crystallisation sequence. The geometry of
fracture al so changes from one of extensive circumferential and radial cracking, typical of
aglass, to amore widely spaced radial failurein the crystalline material, typical of acon-
ventiona sintered ceramic. The decreasein cracking and increasein ballistic performance
suggests that a transparent glass ceramic would have superior performance to glassin ar-
mour glazing applicationswith increased post impact transparency.

The dynamic compressive strength shows a steady increase through the heat treatment
seguence from 600 MPato 1500 MPa. This test simulates the conditions experienced by
the ceramic immediately under the impact site, and as such should give some indication
of the resistance to penetration of the ceramic. Thistest used relatively slender specimens
(I/d = 3.3) offering little constraint. Consequently the peak stress may be controlled by
surface flaw propagation and therefore the increase in compressive strength is probably
dueto acombination of theincrease in hardness and toughness.
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It has been suggested [7] that resistance of the ceramic to shear failureis an important
property. This has been quantified [8] as the energy dissipated by frictional loses during
shear failure under compression. The magnitude of the energy dissipated in shear failure
is then a function of the friction coefficient between fracture surfaces which has been
shown to be equal to the ratio of compressive strength to fracture toughness. Thisratiois
equal to 0.50 for the untreated glass and 0.73 for the fully heat treated ceramic. It is not
clear whether this would be expected, the glass tends under normal loading rates to pro-
duce smoother fracture surfaces than the crystalline material. However the intense crack
branching seen in the fractured glass under ballistic loading indicated severe crack insta-
bility which would give rise to rough fracture surfaces.

Therelatively low hardness of even the fully heat treated glass ceramic indicates that
itsmain useislikely to be in systems designed to stop soft cored rounds. Against the 7.62
mm APthreat the performance of the glass ceramic is quite poor although the use of acor-
rugated tile significantly improved this performance. Against soft cored rounds the per-
formance of the glass ceramic is better than alumina with DoP tests indicating a require-
ment for 9.8 mm of glass ceramic (areal density 29.2 kgm2) compared to 8.7 mm for the
alumina (areal density 33 kgm?). Therefore against soft cored high velocity projectiles
the lithium zinc silicate glass ceramic has a better mass efficiency than alumina, and this
can befurther improved by the use of corrugated tiles.
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