 Tableof Contents TB43

19th International Symposium of Ballistics, 7-11 May 2001, Interlaken, Switzerland

NUMERICAL FRAGMENTATION MODELING AND
COMPARISONS TO EXPERIMENTAL DATA

E.S. Hertel, Jr. and M. E. Kipp

Sandia National Laboratories, Albuquerque, NM, 87185, USA

Previous experiments of atungsten sphereimpacting athin target indicated that
beyond some threshold velocity, the sphere breaks into progressively finer
fragments with increasing impact velocity. Timed radiographs have imaged
this breakup, and been utilized to determine debris cloud expansion velocities.
Numerical simulations of such an impact event clearly demonstrate that the
average strain rate cal culated from this expansion velocity is not representative
of the impact-induced strain rates that produce the fragmentation. Conse-
quently, the average fragment sizes obtained in these experiments must be cor-
related to strain rates extracted from shock wave code simulations to gain the
full benefit of the experiments. An Eulerian shock wave propagation code,
CTH, with afragmentation model has been used to explore the details of these
impact scenarios and effectiveness of the methods employed to model the frac-
ture and fragmentation processes.

INTRODUCTION

The prediction of failure and fragmentation in shock physics analysis codes or hydro-
codes as they are normally called has been agoal of research activitiesin the United Sta-
tes and other countries for many years. Staff at Sandia National Laboratories have been
actively pursuing rescarch in the statistical aspects of fragmentation along with theimple-
mentation of fracture models into hydrocodes, principaly through the fragmentation
models based on thework of Grady [1]. Kipp, et d. [2,3] implemented early versions of this
model into hydrocodes. Conceptsto extend the basic average fragment sizeto a statistical
representation were discussed by Kipp, at a. [3]. To accommodate both high strain rate
fracture at spall (high-confinement, small strains) conditions and low strain rate fracture
(unconfined expansion, large strain to failure), the model described by Johnson and Cook
[4] has also been employed. Previous fracture and fragmentation modeling work on tung-
sten carbide has been reported by Hertel and Grady [5].

Previous numerical analyses of fragmenting cylinders, expanding under explosive
loading, have shown excollent agreement with data (Wilson, et a. [6]). In those experi-
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ments, the strain rates were relatively uniform throughout the cylinder, and the experi-
mental fragment size datawere used to estimate a dynamic fragmentation constant. When
estimates of this same parameter were made for the same material under different loading
conditions— sphere impact onto thin targets —the estimated strain rate and measured frag-
ment dimensions led to a substantially different coefficient [7]. Numerical results discus-
sed here will show for the current model that these discrepancies can be reconciled when
particular attention is paid to the detail s of the strain ratesinternal to the sphere.

In the present study, the sphere impact is used to exemplify the fracture and fragmen-
tation modeling progress. Both two- and three-dimensional numerical simulations of the
experiments have been made of thisimpact geometry using the multi-dimensional Eule-
rian shock physicscode, CTH [8].

NUMERICAL IMPLEMENTATION OF FRACTURE

The remarks contained here will focus on Eulerian formulations for the solution of the
governing equations. The equations that represent the conservation of mass, momentum,
and energy aretypically solved in one of two ways, Eulerian or Lagrangian. The Eulerian
technique assumes amesh that isfixed in space and the problem fluid (or material) moves
through the mesh as afunction of time. The Lagrangian technique assumes amesh that is
fixed with respect to the material and the mesh movesasafunction of time.

Both methods have strengths and weaknesses depending on the specific code. Several
general comments can be made for the major classes of codes. The Eulerian techniques
have several strengths, one of the most important being that they have a simple mecha-
nism for creating free surface in fracture and fragmentation. They are also computatio-
nally robust for large deformation material mechanics, and they have simple schemes for
mesh devel opment and material insertion. They are, however, usually computationally in-
tensive in run time and memory requirements, have difficulties with surface recognition
or material interfaces (Eulerian codes do not explicitly track a surface), and poor numeri-
cal techniques can lead to excessive shock diffusion.

Lagrangian techniques solve the conservation equations on a mesh that moves with
the material. The conservation equations are generally solved using finite difference or fi-
nite element techniques, with finite element techniques being the most popular. Straight-
forward Lagrangian techniques have several strengths: they can be computationally less
intensive in run time and memory requirements and they can accurately recognize mate-
rial interfaces or surfaces. However, free surface creation to accommodate fracture and
fragmentation is difficult and typically relies on ad hoc algorithms, large deformations
frequently lead to mesh tangling or inversion, mesh development can be extremely diffi-
cult in three-dimensions and may be the limiting factor in very large scale computing
problems, and contact surface and slide surface algorithms can be difficult to implement
intwo-dimensions and three-dimensions.

The Eulerian code, CTH, utilized in the current study is a multi-dimensional, multi-
material shock physics analysis package. CTH uses a finite volume scheme to solve the
conservation equations of mass, momentum, and energy in aspatially fixed frame of refer-
ence. Even though we refer to CTH as an Eulerian code, in reality atwo-step solution al-

1386



Numerical Fragmentation Modeling and Comparisonsto Experimental Data

gorithmisused. Thefirst stepisLagrangian in naturein which the material stateisadvan-
ced in time, the computational mesh is alowed to distort, and no materia crosses cell
boundaries. During the second step, the distorted mesh is remapped back to the original
mesh and material isfluxed from the old (distorted) cell to the new (original) cell. There-
map algorithms are second-order to minimize numerical distortion. CTH is widely used
by the United States Department of Defense and Department of Energy L aboratories and
their contractors. Typical simulationsinclude shock propagation, penetration and perfora-
tion of armor, warhead mechanics, and high explosiveinitiation and detonation.

The following discussion is specific to CTH but representative of al Eulerian hydro-
codes. CTH maintains all internal data at cell centers with the exception of the velocities.
Typical cell centered information contained within the CTH database includes material
state, such as mass, volume, pressure, energy, stress, and internal state variables. The cell
data are known at integral time steps. The velocity data are given at the center of acell
face and is known at half time steps. The staggered mesh (both spatial and temporal) for
material state dataand velocities allows for asimple calculation of gradients (again, spa-
tial and temporal) and does not require the solution of an elliptic partial differential equa-
tion. The reader should note that no information about material interfacesis stored expli-
citly inan Eulerian code.

Hydrodynamic fracture or spall is modeled by atechnique known as “void insertion”
where the void material isinserted into acomputational cell when that cell exceedsafrac-
ture criteria. At least two known difficulties exist with thistechnique: oneisthat although
directional information can be used to make a determination the effect of the void inser-
tion isisotropic; two isthat a“fractured” region can heal if that region experiences com-
pression. The latter difficulty can be remedied by the use of a scalar damage model where
an internal state variable tracks materia failure and memory of the failure is advected
with the material motion [4]. In CTH, the scalar damage models are coupled to the tensile
stress (of) criteriaby thefollowing:

of =0s+(Vt—09) D, )

so that the initial fracture stress is the spall stress (o) when damage (D) is zero, but
continuously evolves to the quasi-static fracture stress (ot) as the damage approaches
unity. The damage (D) is based on the Johnson-Cook fracture scheme, an integral of the
equivalent plastic strain [4]. Since this and other similar models affect the local stress-
state, they are coupled to the continuum mechanics and affect material motion. The statis-
tical fragmentation models of Grady and Kipp [1-3] as currently implemented into CTH
are not coupled to the continuum mechanics and do not affect material motion. Past use of
the statistical fragmentation model did not track the fragment distribution until the mate-
rial wasfully damaged (D=1). Thisled to asignificant under prediction of the fragmented
mass [2] for the sphere impact. Experimentally, both geometries — sphere impact and the
explosively loaded cylinder — effectively undergo complete fragmentation. The use of
both models has led to some inconsistencies between the continuum predictions and the
statistical description of fragmentation. The remainder of this paper will describe some of
theinconsistencies and their resol ution.
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Figure 1. Radiographic images of tungsten debris at approximately 30 and 60 us after
tungsten sphere (0.25" diameter, 2550 m/s) impact onto a thin target Lucalox plate (from
Grady, eta. [7]).

EXPERIMENTAL OBSERVATIONS

The impact of a sphere with athin target plate resultsin an expanding debris cloud of
fragmented sphere material. Fig. 1 showstwo sequential radiographs at 30 and 60 s after
impact of atungsten sphere (0.25" diameter, 2550 m/s) with a L ucal ox target (0.10" thick)
[7]. The axial width of the debrisis comparableto the original diameter of the sphere, and
the diameter of the debris cloud is expanding at an acquired velocity that depends on the
impact velocity.

NUMERICAL MODEL AND SIMULATIONS

Numerical analysis of thistungsten sphere impact was made with the multi-dimensio-
nal Eulerian shock physics code, CTH. In order to accommodate the impact and expan-
sion of the sphere in three dimensions, the impact was simulated in a physical space of
3cmx 3cmx 1.7 ecm. Thisregion was uniformly resolved with 0.1 mm cubical cells. Ty-
pical calculations utilized about 15 million cells. The tungsten was modeled as a Mie-
Gruniesen solid, with constant yield strength of 1.4 GPa, Poisson ratio of 0.279, and a
fracture strength that varied from its spall stress at high strain rates (2.0 GPa) to auniaxial
tensile stress (0.9 GPa) at low strain rates and large strain (30%). Properties of the tung-
sten include a density of 17.60 g/cms3, bulk sound velocity of 4030 m/s, linear Us-Up
coefficient of 1.237, and a fracture toughness of 30 MPa-mY2. The Lucalox plate was si-
mulated using the Johnson-Holmquist [9] ceramic model for Al>Os.
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Figure 2. Tungsten sphere at 5 s after impact with athin target Lucalox plate, from two-
dimensional numerical simulation. Left: strain rate (€) regions; Right: average fragment
size(S) regions.

DISCUSSION OF EXPERIMENTAL AND NUMERICAL
RESULTS

The state of the tungsten sphere at 5 psisillustrated in Fig. 2 for a two-dimensional
axisymmetric impact simulation. Two images are included that provide insight into the
fracture strain rate and average fragment sizes. Both the strain rate and fragment sizes are
partitioned into three regions each: strain rate ranges of 0-1x10°/s, 1x10°-2x10°/s, and
>2x10°/s; and average fragment size ranges from 0-0.45 mm, 0.45-0.75 mm, and >0.75
mm. Generally, regions of small fragments are associated with high strain rates and visa
versa[1].
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Figure 3. Histograms from two-dimensional numerical simulation of the tungsten debris
at 5 ps after tungsten sphere impact onto athin target Lucalox plate. Bottom: distribution
of total fragment mass vs. average fragment size; Top: distribution of fragment mass vs.
strain rate at the time of

Histograms from atwo-dimensional simulation of the tungsten response to the impact
areincluded in Fig. 3. Approximately 99% of theinitial 2.36 g sphere mass has fragmen-
ted. Pragmentation of the sphere is complete by 3 us after impact, by which time the dis-
tribution is quite stable. The fragment size and strain rate distribution plotsin Fig. 3 are
taken at 5 ps after impact. The mean mass of fragmentsis at a characteristic fragment di-
mension of about 0.6 mm (Fig. 3, bottom), which isin excellent agreement with the size
estimated from the experimental radiographs [7]. However, the average strain rate repor-
ted in[7] (3.8x10%s) is considerably smaller than the dominant strain rate obtained from
the simulations (~1.4x10°/s), as is clear from the histogram in Fig. 3 (top). The primary
reason for the differenceisthat the strain rate cal culated from the induced expansion velo-
city in the experimental analysis is not representative of the strain rates experienced by
the sphere that lead to fracture and fragmentation. Explicitly, the larger strain rates obtai-
ned numerically are controlling the fragmentation, and the induced expansion velocity of
the debrisis a consequence of the fragmentation, not a contribution to the process. Using
the same fragmentation parameters in the simulations of both this impact event and the
previously reported cylinder test results [6] lead to average fragment size results that are
consistent with both experimental measurements.
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Figure 4. Synthetic radiographs of tungsten sphere at 30 s after impact with athin target
Lucalox plate, from three-dimensional numerical simulation. Left: view normal to axis of
impact; Right: view parallel to axis of impact.

The calculated decreasein axial velocity isabout 190 m/s, compared to an experimen-
tal value of 220 m/s. These simulations of the impact event result in expansion velocities
that are higher than those measured — in this impact simulation the expansion velocity is
about 200 m/s compared to the measured one of 99 m/s[7].

When a three-dimensional simulation of this sphere impact event is extended to the
time of the frst experimental radiograph (~30 ps), the breakup and expansion of the tung-
sten can begin to be observed numerically. Synthetic radiographs from the simulation are
shown in Fig. 4. On the left isthe same view as that of the experiment (Fig. 1) and on the
right isaview aong the axis of impact. The latter view clearly illustrates the breakup of
the tungsten by this time (although the “fragments’ on these radiographs are a conse-
guence of local code factors and not defined or constrained by the uncoupled fragmenta-
tion model).

CONCLUSIONS

Consistent fragment characteristics from two distinctly different geometries — explo-
sively loaded cylinders and sphere impacts — can be cal culated with the same material pa-
rameters. In the original implementation of the Grady-Kipp model, the statistical repre-
sentation was not initiated until the material underwent complete damage (D=1). When
the implementation was modified to allow the fragment statistics to be calculated for any
damage level, the comparison of datato simulation improved significantly. Key to thisre-
sult is the observation that in the sphere configuration, the strain rates during the fracture
process are much larger than the inferred average strain rates derived from the late time
debris expansion velocity. Fracture models that accumulate a wide range of loading con-
ditionsare required to address these diverse geometries. In the cylinder test configuration,
the large expansion strain to failure occurs at relatively small strain rates over along pe-
riod of time; stresswave interactions within the impacted sphere occur at very large strain
rates over very short periods of time.
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