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INTRODUCTION

During the past decade, considerable attention has been given to the mechanical beha-
vior of ceramics under impact and thermal loadings. These investigations have encom-
passed the full range of dimensional scales, and some of the results have been applied to
ceramic armor. In the simplest case, this armor consists of a frontal layer of coramic tiles
backed by plates of a ductile metal or of composite materials. Present practice for the sup-
port plate tends to the use of Aramid or high density Polyethylene in polymeric matrices.
Examination of the behavior of such backing plates is therefore a necessary part of the in-
vestigation.

The acquired information is intended to be used in computer simulations of the ball-
istic event and also in the development of analytical models of the process. Both approa-
ches encounter difficulties due to uncertainties in understanding essential physical me-
chanisms such as the conditions and process of dynamic failure of ceramics, the ballistic

This paper is concerned with the further development of the multi-stage pene-
tration mechanics model of ceramic armor originally proposed in 1989 by Ra-
vid & Bodner and revised in 1999. The 2D analysis relies on the treatment of
the initial shock stage (1987), and on the model of 1983 for a rigid projectile
penetrating a viscoplastic target. After the shock stage that leads to shattering of
the ceramic layer, continued penetration of the projectile into fragmented cera-
mic, held in place by the backing plate and by inertial effects, is an important
part of the process. The final stage involves deformation and penetration of the
backup plate which can consist of Aramid or high density Polyethylene in poly-
meric matrices. The performance of such laminate backing materials under im-
pact loading has been studied which included detailed examination of their
straining and failure. These physical considerations are incorporated into the
final penetration stage of the current analysis of ceramic armor.
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resistance of fragmented ceramic held in place by a support plate, and the performance of
the backing plate as an integral component of the armor system.

The present paper is a continuation of the development of the analytical models of [1]
and [2] for the ballistic penetration of ceramic armor. Emphasis here is given to a detailed
examination of the performance of laminated composite backup plates that are currently
in use.

ANALYTICAL MODEL

In [1] and [2], the initial stage of impact is characterized by shock waves developed in
the ceramic frontal layer and in the projectile as described in [3]. When the shock wave in
the ceramic reaches the interface with the backup plate, rarefaction waves are generated
which propagate backwards towards the impact surface. The shock compressed ceramic
is more dense than the original state but had experienced damage in the form of micro-
cracks developed by the initial wave. These effects influence the velocity of the rarefac-
tion wave in opposing manners. After a short delay, the rarefaction wave is followed by
breakup of the ceramic whose front can be considered to be a “shatter wave”. The velo-
city of the shatter wave is estimated to be co/2 where co is the velocity of bulk elastic wa-
ves and is approximately equivalent to that of the Rayleigh surface wave for maximum
crack propagation.

The shatter wave velocity should also be influenced by the bonding at the interface
and by the impedance mismatch effect on the intensity of the reflected wave. A factor F on
the velocity co/2 is taken to be,

(1 ) 

where PH1 is the Hugoniot pressure in the ceramic due to projectile impact, and PH2 is the
Hugoniot pressure delivered to the backup plate due to “impact” of the ceramic on it (at
twice the initial particle velocity in the ceramic). Typical values for F are in the range
0.65–0.90.

Complete breakup of the ceramic is presumed to occur when the front of the shatter
wave reaches the forward extent of the “inelastic zone” of comminuted (pulverized) cera-
mic surrounding the imbedded projectile. Penetration of the projectile during the shock
stage is calculated from [3] up to a time T1 when shock effects are diminished. After T1,
penetration continues according to the analysis of [4] and projectile erosion, as determi-
ned in [3], is assumed to continue at the same rate until breakup. Subsequent to breakup,
continued penetration is resisted by fragmented ceramic pieces held in place and constrai-
ned by the backup plate and by inertial effects. The effective strength of the fragmented
ceramic σ'0c is estimated by an empirical equation,

(2)

In eq. (2), σ0b is the in-plane strength of the backup layer of thickness Hb, and Hc is
the ceramic thickness between the current projectile front and the interface. The modify-
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ing term in (2) depends on the relative inelastic bending moduli of the two components of
the armor. For strong support, the effective strength would be 0.2 of the compressive
strength of intact ceramic σ0c, which was indicated in a few exploratory tests. Alternati-
vely, weak backing of the fragmented ceramic would lead to low effective strength. The
quantity m is intended to indicate the quality of bonding and is taken to be unity for opti-
mum bonding.

Penetration of the projectile through fragmented ceramic is considered to be operative
until the front of the inelastic zone surrounding the projectile reaches the interface. At this
condition, motion of the backup plate is initiated with a velocity field corresponding to
simple radial flow emanating from a point on the centerline as in the initial bulging mode
of the model of [4]. For this stage, shear strength and frictional effects in the comminuted
ceramic forward and moving with the projectile and in the laminated backing plate are ig-
nored so that material displaced by the combined projectile bulges into the backing plate
and leads to an equivalent volume bulge of that plate’s outer surface. This mode is illus-
trated in Fig. 1 where the volume of material within the sector angle 2ψ for the spherical
cap shaped bulge of the backup plate equals that for the bulge in the ceramic plate with
sector angle 2β. As a consequence, the average velocity for each layer i of the backup
plate with radial extent ηiR, Vi, can be related to the current projectile velocity V and the
radial flow geometry by,

(3)

where

(4)

and the layers are numbered from i=1 to N, R is the projectile radius, and ηb,ηbb are
shown in Fig. 1. According to the model of [5] for the behavior of fabric subjected to a
transversely applied velocity, the average resisting force that each fabric layer, assumed
elastic, would exert in the direction of the applied velocity would be

(5)

where E is Young’s modulus, εi is the strain, Y is the number of yarns of fabric per unit
length, S is the cross section of the yarn, and θi is the angle between the force induced in
the deformed yarn and the direction of projectile motion. It is also assumed that the force
is constant over the effected length of each layer.
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Fig. 1: Bulging of backup plate.

An essential point in the model for the behavior of the laminated backup plate is that
the resisting force in each layer, eq. (5), could be expressed in terms of the velocity of
each layer, , which in turn is a function of the current projectile velocity and the cur-
rent geometry, eqs. (3),(4). The relevant equations are given in [6] and reproduced in [51,
[7] and other papers. In the present notation they are,

(6)

where c is the longitudinal elastic wave velocity in the yarn. A practical value of c to be
used for a strong fabric surrounded by a polymer matrix is.

(7) 

where the factor is based on the work of [8] and P is the fraction of added mass of
polymer. The (1–P)1/2 term is approximately that obtained by calculating an effective mo-
dulus based on the law of mixtures. The angle θi is determined from [6] to be a function
only of the strain εi so it could also be expressod in terms of V and the current geometry
from (6) and (3),

(8)

The total resisting force of the backup plate could be obtained by summing Fi for all
the layers of fabric. However, the resisting force of each layer multiplied by its velocity

is summed and enters the overall work rate balance equation of [4] for determination
of the current penetration velocity.

Continued penetration leads to a condition where the spherical cap geometry of the
bulge of the ceramic layer changes to a bulge advancement mode as described in [4]. To
simplify the calculation of ψ for subsequent penetration, the ratio (cosψ/cosβ) is held
constant at the value existing at the transition. The velocity field described by (3), (4) re-

Vi,

1 / √2,

Vi,
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mains unchanged. With further penetration, the projectile front reaches the original posi-
tion of the rear surface of the ceramic layer. At this condition, the projectile and the com-
minuted ceramic material forward and moving with it are considered to act together as a
rigid projectile having the current momentum. Penetration of the backup plate by the ef-
fective projectile would again be governed by the work rate balance equation of [4] using
the preceding equations for the resisting force and velocity of each layer of fabric. During
this final stage, the angles β and ψ are taken to be constant at the onset values. Failure of a
layer of fabric is governed by a limiting strain criterion where the strains are obtained
from eqs. (6) and (3). Until failure, each layer would contribute to the work rate balance
equation.

EXAMPLES

Some numerical exercises were performed for the ceramic armor combinations des-
cribed in [2]. The properties of the projectile, the ceramic outer plate, and those of the
backup plate of Kevlar fibers in a polymer matrix are listed in Tables I and II. The exam-
ples consist of three different thicknesses of the ceramic layer, 8.5, 9 and 10 mm, and
backed respectively by 28, 26 and 20 layers of Kevlar K770 laminate to provide for an
equal areal density of 50 kg/m2. Areal density of each Kevlar layer was 560 gram/m2 with
the matrix and 470 gram/ m2 without the matrix.

Numerical exercises were carried out for each case for impact by a 7.62x54 mm API
projectile at 870 m/s. Results of the penetration velocity-time history for each case are
shown in Fig. 2. All three cases led to no perforation (similar to the results of the ballistic
tests), but the one with the 10 mm ceramic (case 3 of Table II) indicated the best relative
performance with no breakage of any of the layers of the backup plate.

Fig. 2: Calculated penetration velocities for the three cases as functions of time.
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Table I. Material properties

Table II. Ballistic test target ad calculated results

projectile: 7.62x54 mm T API-B32/0°N hard core diameter = 6.1 mm
total actual length of AP core: 29.9 mm hard core weight 5.39 gm
equivalent cylinder length: 23.5 mm impact velocity: 870 ± 5 m/s

areal density of armor = 50 kg/m2

DISCUSSION

The modification suggested in this paper of the analytical model for ballistic penetra-
tion of ceramic armor [2] leads to improved understanding of the response behavior of la-
minated backup plates. Those plates provide the support for fragmented ceramic to have
effective resistance to ballistic penetration. They also serve to absorb kinetic energy of the
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residual effective projectile in the final stage of the penetration process. In that respect,
the backup plate acts as a viscous medium, even for elastic fibers, since the resistance de-
pends upon the imposed penetration velocity.
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