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Composite panels made from fabrics and resin are important componentsiin to-
day’s light armors. Experimental work has indicated that for a few sheets of
fabric, “Dry is better,” meaning that fabric sheets without any resin will outper-
form the equivalent areal density of afabric/resin composite. Thispaper examines
thisresult. It is shown that for low relative areal densities of fabric, thelossin
fabric material (by weight) by adding resin leadsto alossin performance of the
armor system. However, asthe relative areal density increases, the fabric/resin
composite panel beginsto show bending stiffness, and its performance increases.
Experimentally it has been observed that the crossover in performanceisin the
region where the mass of the fabric material involved in the momentum
balance equals the mass of the impacting bullet. As the areal density of the
fabric increases beyond this point, the fabric/resin composite panel outper-
forms the equivalent areal density dry fabric. This paper provides an equation
to predict the ballistic limit curve of the fabric/resin composite panel given the
ballistic limit curve of the dry fabric. The analytic expression agrees well with
experimental data.

INTRODUCTION

Fabrics are an extremely important part of modern armors. Also extremely important
are composite panels made of fabric sheets stiffened with resin. At the last International
Ballistic Symposium, a considerable amount of work was reported describing fabrics and
fabric/resin composites (e.g., [1-8]). In particular, an analytical model was presented that
predicted the ballistic limit curve of afabric based on the el astic properties of the fiber [8].
Thismodel analytically addressed a number of topics, such astransverse wave velocity in
the fabric, which will be used below to estimate the way in which a composite panel com-
prised of fabric with resin responds.

Experimental work with panels made from fabrics and resin has indicated that for a
few sheets of fabric, “Dry is better,” [2,3] meaning that fabric sheetswith no resin (hence
dry) will outperform the equivalent areal density of afabric/resin composite. For low re-
lative areal densities of fabric, thelossin fabric material by adding resin in order to main-
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tain the same areal density leadsto alossin performance of the armor system. However,
as the relative areal density increases, the fabric/resin composite panel begins to show
bending stiffness, and its performance increases. Experimentally it has been observed that
the crossover in ballistic limit performance is in the region where the amount of fabric
material involved in the momentum balanceis equal to the mass of the impacting bullet.
Asthe areal density of the fabric increases beyond this, the fabric/resin composite panel
outperforms the equivalent area density dry fabric. This paper provides an equation to
predict the ballistic limit curve of the fabric/resin composite panel given the ballistic limit
curve of the dry fabric. The equation is then compared to experimenta data for Kevlar
29/resin composite panels.
tv

Figure 1: Geometry of deforming fabric and fabric/resin composite.

SIMPLE THEORY

When a projectile impacts a fabric, the fabric forms a pyramid with the projectile at
thetop apex (Fig. 1). The edges of the pyramid coming down from the top apex runin the
direction of the fibersin the fabric weave. An experimentally observed fact from nume-
rous tests is that the ratio of the height of the pyramid h to its diameter R is a constant.
Thisratio is directly related to the strain experienced by the fabric. To afirst approxima-
tion, thestrainisgiven by

e L VEERT 1(2)2 )

- R 2\ R

As was mentioned, thisis an approximation: in reality, there is also a dependence on
theratio of the projectile diameter to the base diameter of the pyramid, and so asthe pene-
tration progresses and the base of the pyramid grows larger, the strain slowly increases
until the fabric breaks (see[8] for details).

Sinceit isobserved that the h/Rratio is constant, it islegitimate to determine the value
of h/Rearly intheimpact event. At early time, the height isgrowing at avelocity V, where
V is given by the momentum balance between the initial momentum of the projectile
being set equal to the combined momentum of the projectile and the amount of fabric set
in motion:
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In this expression, Vsisthe striking velocity, my, is the projectile mass, A, isthe pres-

ented area of the projectile, B isamultiplier to givethe areaof fabricinertially involvedin

the motion (an approximation), and p isthe area density of the fabric (and below, fabric

and resin). Experimentally 8 ~ (1.6)2 = 2.56. The base radius of the pyramid is growing at

avelocity c. Thislatter wave speed is atransverse wave speed, and dimensional analysis
givesit aform of (or see[8] for aderivation)

¢ = oVt ©)

Here, c; isthe wave speed in the fiber, given by the square root of the elastic modulus
divided by the density. However, any modulus related to the fabric would do, from the di-
mensional analysis point of view. For the fabric model presented in [8], ataught fabric has
o = 1/2. Aloosefabric or crimp leadsto alarger a (though till lessthan 1).

With Eq. (3) giving the transverse wave speed, it is possible to calculate h/R, since for

early timeh=Vtand R= ct:
ho_ (VY (@)
R h Ci\ Cr

Thus, the strain in the fabric is determined by the competing rates of increase in the
height and base diameter of the pyramid.

It ispossible to explicitly estimate the magnitude of the change in ballistic limit velo-
city by assuming the fabric breaks at afailure strain g; and setting thisequal tothestrainin

Eq. (1):
g = V= ©
Useof Egs. (2) and (4) then gives
Vi = ﬁ”—fn;@@cfe}’“(qﬁ)”“ = (L+BX)ee ™) (6)

P

This expression uses the nondimensional measure of the relative areal densities of the
fabric and projectile X = pAy/my introduced by Phil Cunniff. (For comparison, the model
presented in [8] yieldsthe ballistic limit as

9 R (R ) R In( 1
v, = 5(1+[3X)cfej{R—”’] -2 E”—’ +3r  where R—bl = K} FaL Y
P » ’

thus giving o= 1/2 and (c1/ \/2_)310‘ ~1.8. The more complicated expression of Eq. (7)
captures the curvature in the ballistic limit curve, while the simple expression of Eq. (6)
doesnot.)
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When a small amount of resin is added to afabric, to maintain the same areal density
some of the fabric must be removed. Since the massin the fabric/resin system isthe same,
the rate of growth of the height of the pyramid is also the same (Eq. (2)). The transverse
velocity, however, does change due to the decrease in fabric and hence modulus:

o = ®)

Here, r isthe massfraction of resin in the system: r = 0 isdry fabric,andr = 1ispure
resin. Combined with Eq. (6), thisimpliesthat the new ballistic limit upon the addition of
resinis

VaX,r) = vV1-rV,X,0) 9

Thus, if al the addition of resin did was add mass, then the result would be that the
ballistic limit is always decreased by the addition of resin. For example, 18% resin would
decreasetheballistic limit velocity by 9.5% for all areal densities.

Such areduction is not observed. Though areduced ballistic limit is seen for smallX
(low areal densitiesof fabrics), for larger X the ballistic limit of the fabric/resin composite
panel exceedsthe ballistic limit of the dry fabric.

ADDITIONAL EFFECTS OF ADDING RESIN:
ROLE OF BENDING STIFFNESS

There are four other mechanismsthat comeinto play asresinisadded to fabric:

1) theincreasein resin leadsto aresistance to bending in the fabric/resin composite (as
opposed to the dry fabric that only has tensile membrane stresses), thus increasing the
panel’s resistance to deformation and thusincreasing the ballistic limit;

2) the newly acquired bending strength leadsto an increase in the transverse wave speed,
thus reducing the strain and increasing the ballistic limit;

3) the now harder panel deforms the projectile, leading to an increase in the presented
area of the projectile and thus leading to an increase in the ballistic limit;

4) itispossible that for larger amounts of resin the harder panel will rigidly hold the fa-
bric, allowing the fibers to be sheared by the projectile rather than failing in tension
(their optimal failure mode), thusleading to areduction in ballistic limit.

These mechanismsall have arole, but this paper will focus on mechanism #1, where it
is possibleto quantitatively estimate the magnitude of the effect.

Resistance to bending in beams and plates is proportional to the moment of inertia of
the beam or plate, which for a constant cross section is proportional to the cube of the
thickness. For the fabric with resin, the thickness of the plate will be assumed proportio-
nal to the areal density, and so it is possible to write heuristically the increase in stiffness
of theplateintheform

E = E(1-r)1+yrX>) (10)
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In thisequation, yisafunction of r that isto be determined. Experimentally, the ball-
istic limit of the fabric with resin and the dry fabric often occursin the vicinity of X=0.3
to 0.5, and so here it will be approximated by X = /B = 0.39. (This is an intriguing
assumption, since it says that the crossover in ballistic limit behavior occurs when
BApP = mp, i.e. that it occurs at the point where the mass of the fabric or fabric/resin panel
inertidly involved in the impact event equals the mass of the projectile.) These assumptions
give

-

) = - p’ (11)

r

Placing thisresult into the expression for ballistic limit vel ocity gives

V,X,r) = V1-r+rBX) V,X,0) (12

Equation (7) and Eq. (12) applied to Eq. (7) are shown in Fig. 2 for 1000 denier Kev-
lart®29, cf = 7400 m/s and &= 3.25% [ 3], and the composite panel is18% resin (r= 0.18).
The curves agree well with the data taken from [3]. The experimental degradation in ball-
istic limit velocity is greater than predicted for small X. Also shown is a curve with r =
0.4, to give an idea of the mass fraction required to match the small X ballistic limit data.
Overall, the agreement is good.
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Figure 2: Ballistic limit curvesfor dry Kevlar 29 fabric and Kevlar 29/resin composite pa-
mel; pointsare datafrom [3]: curvesarefrom Egs. (7) and (12).
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CONCLUSIONS

It has been shown that “Dry is better” for relatively low areal densities of fabric be-
cause of the loss of fabric mass and thus tensile strength while adding resin and maintain-
ing the same areal density. However, as the relative areal density increases, the compo-
site fabric/resin panel begins to show bending stiffness, and the increase in deformation
resistance due to bending strength soon compensates for the loss of fabric material, and in
fact as the relative thickness of the composite panel increases, there is an increase in the
ballistic limit of the fabric/resin system, as compared to the dry fabric for the same areal
density. An equation to predict the ballistic limit curve of the fabric/resin composite panel
given the ballistic limit curve of the dry fabric was produced. The analytic expression
agreeswell with experimental data
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