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NUMERICAL SIMULATIONS OF DYNAMIC X-RAY IMAGING
EXPERIMENTS OF 7.62-MM APM2 PROJECTILES
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A modification of Wilkins computational ceramics model is used to simulate
experiments of the impact of the APM2 bullet and modified bullets (core and
Pb nose, and core only) against B4C targets. The experiments were conducted
in the reverse ballistics mode. Flash radiography provides time-resolved pene-
tration histories. The simulation results are compared to the experimental data;
generally, agreement isvery good.

INTRODUCTION

The classic study of Wilkins and coworkers in 19671969 [1-2] provided the first
high speed photographic images and X-ray shadowgraphs (3 channels of 600 KeV) of
small arms projectiles impacting ceramic targets. Wilkins used a monolithic hard steel
(R:55) projectile as a surrogate projectile for the 7.62-mm armor-piercing (AP) bullet.
Wilkins also developed a phenomenological computational ceramics model for thin tiles
and compared the results of numerical simulations — using the Lagrangian hydrocode
HEMP — with experiments. He then performed parametric studies to investigate the in-
fluence of ceramic material propertieson ballistic performance[1-2].

The 7.62-mm APM2 bullet is exceedingly more complex than the monolithic surro-
gate used by Wilkins. A schematic of the bullet isshown in Fig. 1. The bullet consists of a
jacket made of gilding metal (90% Cu, 10% Zn), 4.21 g; alead (Pb) nose element, 0.78 g;
aPb basefiller, 0.50 g; and avery hard steel core, 5.25 g. Thelead noseis pressed over the
steel core and both are encased in the metal jacket. The masses are nominal values. Some
lots of bullets do not contain the Pb basefiller, and then the Pb point filler is slightly more
massive (e.g., 1.3 g), with the total mass of the bullet still 10.6-10.7 g. The core design
dates from 1939; the 1070 tool steel core has a classical ogive nose and boat tail design;
the coreisvery hard, measuring Rockwell C62—65.

The U. S. Army Research Laboratory (ARL) adapted dual one-MeV X-ray pulsersto
obtai n two shadowgraph images of the impact of the APM2 bullet impacting boron carbid
(B4C) [3-4]. The goal wasto conduct ahigh fidelity diagnostic analysis of penetrator/bul-
let interaction during the first 55 us after impact. Three conditions of the projectile were
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tested: the full metal jacket (FMJ) projectile; thelead (Pb) tip and steel core only; and just
the steel core. The FMJ was removed by machining for tests with the core, or nose and
core only. These conditions allow the separation of the ballistic contributions of the pro-
jectile components. A flash X-ray shadowgraph of each projectileisshowninFig. 2.
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Figure 1. Schematic of 7.62-mmAPM2 bullet.
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Figure 2. Static X-raysof projectiles.

Numerical simulations using the Johnson-Holmquist ceramics constitutive model for
B4C [5] were not in good agreement with the experiments[3]. The authors report that the
most obvious discrepancy was the inability of the simulations to replicate the erosion of
the steel core [3]. Walker and Anderson [6] took Wilkins' computational ceramics model
and implemented the model into CTH [7]. The model was applied to AloO3 ceramic tiles
and the M80 ball round. Later, the model was applied to B4C ceramic tiles impacted by
Wilkins surrogate AP bullet, and modifications were required in order for the simulations
to match experiment [8]. This modified model is now usod to simulate the reverse ball-
istic experimentsfor thethree projectilesshowninFig. 2.

A brief description of the experiments will be given, followed by a summary of the
modifications made to the Wilkins ceramic model. Then the simulation results will be
compared to the experimental data.

EXPERIMENTAL SETUP AND RESULTS

The experiments consisted of 8.2-mm-thick B4C, 76 mm in diameter, backed by a
38.1-mm polyethylene, all encased in a polypropylux plastic sabot. The B4C tiles were
hot-pressed by Cercom, Inc., of Vista, CA, and had a density of 2.51 g/cm3. The package
was fired from a 100-mm diameter light gas gun. The experiments were performed in the
reverse ballistics mode where the “target” wasfired at the stationary bullet, shown in Fig.
3. Theimpact velocity varied between 856 m/s and 860 m/s. Other details about the expe-
rimentsare described in Refs. [3-4].

A time delay circuit was used to set the delay between the two X-raysto 10 ps. The
flash X-ray images were enhanced digitally, and a set of physical measurements were
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taken from the X-ray film asdefined in Fig. 4. Timeismeasured from impact. The experi-
mental resultsare summarized in Ref. [3-4].

a
- PR L =

/—Num(num Shieiding Ring LR FEONT
Ceremic Tie
[ &
2z TEE NI TP T R —
Ty ign —-JI
TATW
FHILEL TILE

BART/T ARG IT
VLT
O—Rings
an

TN

Il iR ELd

Figure 3. Reverse ballisticstarget assembly. Figure4. X-ray measurements.

NUMERICAL SIMULATIONS

Modifed Wilkins’ Ceramic Constitutive Model

Anderson and Walker incorporated Wilkins' ceramic model into the Eulerian wave-
code CTH [7] and compared the computational resultsto flash X-ray shadowgraphstaken
by Wilkins, et al. [9] of the surrogate projectile impacting B4C tiles. The simulations re-
sults did not agree with the results inferred from the X-ray images. Additionally, results
from numerical simulations using the Wilkins model did not agree with experimental data
for the APM2 bullet [10]. To understand the discrepancies necessitated a re-examination
of the model [8]. Two very important modifications were required for the model to repli-
cate experimental observations. First, it was found that a description of the shear strength
of thefailed ceramic material isnecessary. A Drucker-Prager model was incorporated into
the overall ceramics model to account for the strength of failed ceramic.

The second modification is associated with the speed of damage. The origina model
assumed that the transition of strength from intact to failed ceramic was associated with
crack propagation. It was found that damage propagation had to be slowed significantly —
by approximately afactor of 20 relative to a crack propagation velocity — for the simula-
tionsto replicate experimental details. Within the context of the model, a damage variable
controls the maximum speed of damage propagation. It appears that there are two distinct
phenomena concerning the impact and penetration of aceramic tile. First, thereisthe ap-
pearance of cracks. Radial cracks appear first, the result of hoop tensile stresses, followed
by circumferential cracks, forming fracture conoids. Although these cracks certainly de-
grade the structural integrity of the ceramic, large pieces of ceramic remain in the path of
the projectile. To penetrate, the projectile must “grind up” the ceramic — called comminu-
tion —into a very fine ceramic “powder.” This comminuted material is referred to as the
Mescall zone [11]. It is this comminution process that dominates the penetration dyna-
mics of ceramic tiles [8]. With these modifications, simulations reproduce the ballistic
limit experiments of Wilkinsfor boron carbide on an auminum substrate [8].
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Simulations of Experiments

It wasreported in Ref. [3] that numerical simulations could not replicate erosion of the
steel core. The fundamental cause of for thisfailure to reproduce the experimental results
isaconsequence of theinability of the ceramics constitutive model to capture the pheno-
menon called dwell, where the impacting projectile “sits’ on the ceramic front face and
does not penetrate the ceramic. During dwell, the projectile loses kinetic energy due to
both massloss and deceleration.

We use the ceramic model of Wilkins as modified by Walker and Anderson [6,8] to si-
mulate the experiments described in Refs. [3—4]. The simulations are presented in the order
of increasing complexity of the projectile, i.e., the core only; the Pb nose and core, and the
FMJ projectile. All simulations were conducted for an impact velocity of 857.8 m/s, an
average of the experimental impact velocities. For purposes of the simulations, “0” deno-
testhetarget surface—and thetip of the projectile—at the time of impact (taken ast=0).

The positions of the nose and tail of the core are plotted as the solid symbols versus
timein Fig. 5(a). Although there was not a flash X-ray shadowgraph at t = 0, the positions
of thenoseand tail, aswell asthelength of the projectile, can be plotted because of pretest
measurements. Evidence for dwell is seen in the experiments as well as in the simula-
tions. Thereis little to no penetration for the first 15 ps, and only 3 mm of penetration at
25 ps. However, with failure of the ceramic, the penetration rate increases. The simula-
tion result passes through the first two experimental data points for the tail position, but
overestimates the tail position for the next two data points. The simulation result for the
tail position agrees better with the last two experimental data points. Thiswill be discus-
sed further in the paragraphs below. It appears that the simulation slightly overpredicts
the depth of penetration into the target.

We make a distinction between comparisons of nose/tail positions and the length of
the core. Nose and tail positions were measured relative to afiducial system, as was the
front surface of the ceramic. These data were then used to calculate the positions of the
nose and tail relative to the impact surface. The position of the impact surface is difficult
to measure precisely since the image on the flash radiograph isa“ shadow” of the ceramic
tile projected onto a plane. Any error associated with ascertaining the location of the im-
pact surface resultsin errorsfor the nose and tail positions. In contrast, projectilelengthis
measured directly from the radiographs.

In general, numerical simulations fairly accurately predict the position of the projec-
tiletall versustime sincethisis primary kinematics. The simulation result passes through
the experimental valuesat 15 usand 25 pusin Fig. 5(a). The simulation result is above the
datapointsat 25 and 35 us, implying that thetail is moving faster in the simulation than in
the experiment. However, the two data points at 45 and 55 pis are close to or on the simu-
lation result. Thus, the experimental data, taken at face value, would indicate that the tail
velocity accelerated between 35 and 45 ps.1 Clearly, the projectile tail does not speed up
during penetration (the simulation result shows that the tail position vs. time is concave
down, indicating that thetail isdecelerating). Thus, it is concluded that one or more of the

1 Itisnoted that theimpact velocity for these data points differed only by 3 m/s, so different impact velocities
cannot be the source of the discrepancy.
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position measurementsisin error; and from the preceding discussion, it ismost likely that
thereis some error in determining the location of the original impact surface. If it is assu-
med that the simulation result is reasonably accurate for the position of the tail vs. time,
then the experimental tail data can be shifted to lay on the simulation results.2 The nose
position needs to be displaced the same distance sinceit also is plotted relative to the im-
pact surface. The open circlesin Fig. 5(a) denote this shift. Except for the nose position at
55 us, where the X-ray shadowgraph shows a fractured core, the simulation result isin
good agreement with the experimental resullts.

The experimentally measured core lengths versus time are plotted as the solid sym-
bolsin Fig. 5(b). The error bars indicate approximately + 1 mm uncertainty in the measu-
rements. The solid line represents the simulation result. The core fractured longitudinally
and split along the centerline, resulting in a “false” length, for the data point a 57 ps.
Agreement, in general, is quite good. The fact that the core length is reproduced reason-
ably well supports our argument for the position errorsfor Fig. 5(a).

The dashed linein Fig. 5(b) represents the simulation result for the Pb-nose-plus-core
projectile. The open symbols denote the experimentally measured lengths for this projec-
tile. The Pb-core projectile should have an initial length of 3.2 cm; however, in the pro-
cess of removing the jacket, some lead was inadvertently removed. A picture of one of the
projectiles actually shows the tip of the core just visible in front of the Pb element. Thus,
the Pb-core projectiles do not have lengths as might be supposed; instead, the lengths are
between that of the core-only and Pb-core projectile. Therefore, the experimental results—
the open circlesin Fig. 5(b) —should fall between the core only dataand the theoretical re-
sponse of the Pb-core projectile. Thisis exactly the case, although the results tend to be
closer to the core-only projectile. This is reasonable since the process of removing the
jacket almost surely removes some of the Pb material at thetip of the bullet nose. The dot-
ted lineis the calculated length of the core for the Pb-core projectile. The simulation pre-
dicts that the Pb nose damages the ceramic, with the subsequent effect that a somewhat
longer steel core (~ 5 mm) remains after penetrating the ceramic tile; this has been ob-
served experimentally [10].
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Figure5. (a) Position-time history of the nose and tail and (b) steel corelength vs. timefor
the core-only and Pb-nose+core projectile.

2 This corresponds to an error of only afew millimeters in determining the position of the front face of the
ceramic.
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The simulation and experimental data for the FMJ projectile are compared in Fig. 6.
The solid linesin Fig. 6(a) represent the positions of the nose and tail of the FMJ projec-
tile, while the dotted lines denote the positions of thetip and tail of the core. Thetip of the
core reaches the projectile-target interface at approximately 8 us after impact, and from
that time on, the nose of the eroded projectile and the nose of the core are coincident. The
solid triangles denote the experimental data. Although flash radiographs exist at 7 and
17 pss, absolute positions could not be determined.

If it isagain assumed that thereisasdlight error in determining the absol ute position of
the front surface of the ceramic tile, and that the experimental and calculated tail positions
should coincide, then the experimental data can be shifted aswas donein Fig. 5; the shif-
ted data are denoted by the opened triangles. Again, the smulations are in good agree-
ment with the experimental results.
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Figure 6. (a) Position-time history of the nose and tail and (b) FMJ length and steel core
length vs. time for the FMJ projectile.

The total bullet length and the core length versus time are plotted as the dashed and
solid linesin Fig. 6(b), respectively. The solid symbols denote the experimental data. The
measured length at 25 pis agrees with the calculated length for the total projectile, but the
lengths at | ater times agree better with the cal culated length for the core. Thisis consistent
with the flash radiographs, as shown in Fig. 7. At 35 us, the jacket is dliding past the core.
The core, because it has a strength approximately double that of the jacket, is decelerated
faster than the jacket. The measurements from the flash radiographs are to the tail of the
core. In the simulation, however, the core and the jacket remain together and do not sepa-
rate.

CONCLUSIONS

Numerical computations were conducted to simulate reverse ballistic experiments to
examine the time-resolved penetration of into a boron carbide tile by three different pro-
jectiles, the 7.62-mm APM2 bullet, and two modified bullets. The ceramics model of Wil-
kins, as modified by Walker and Anderson, was used to represent the constitutive re-
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sponse of the ceramic. The simulations reproduce the phenomenon of dwell, and for the
most part, show very good agreement with the experimental data. The simulations agree
very well with the projectile lengths measured from the flash radiographs. The positions
of the projectile nose and tail relative to the ceramic front surface are in good agreement
after a dlight adjustment to the “apparent” position of the ceramic surface. One discrep-
ancy isnoted between the simulations and experiments. In the experiments, the coreisde-
celerated faster than the jacket, and the jacket slides down over the core. This observation
isnot reproduced in the simulations.

Figure 7. Flash radiographs of the FMJ projectile.
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