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INTRODUCTION

To date, almost all bullet resistant glass comprises of glass laminates with rubbery
interlayers (such as polyurethane or polyvinylbuterate (PvB)) and a polymer as a backing
layer, usually polycarbonate. The interlayers provide a flexible separation between the
layers of glass and serve to contain the glass array. The backing layer is used to prevent
spall at the rear face of the target. Depending on the threat level, different combinations of
these layers form an array to prevent perforation by the projectile. Whilst manufacturers
will trial different materials, few manufacturers in the world are deviating from this ap-
proach. For these types of transparent armour systems, the penetration and subsequent
perforation mechanics is fairly well documented.

What is lacking however, is an understanding of the perforation mechanics of spaced
glass systems where arrays of glass are constructed with air gaps in-between (such as a
common double glazing system). In this paper a comprehensive experimental and nume-
rical programme will be presented that describes the perforation of a 7.62 mm NATO Ball
round through a multiple spaced glass system.

An experimental and numerical programme was conducted to investigate the
mechanics of perforation of the 7.62 mm NATO Ball round through multiple
glass systems. Each system consisted of four float glass plates with either 0.0,
1.5, 2.5 or 5.0 mm spacing between each plate. Moreover, the areal density of
each system was varied between 30.4 and 121.4 kg/m2. Reasonable confidence
was achieved in the numerical programme by comparing high-speed digital
photographs with numerical results. Unfortunately, the simulations did not pre-
dict the full dynamic response of the materials observed by the high-speed
camera however they did provide an insight into the damage mechanics of the
glass. The numerical simulations showed that varying the spacing in-between
each plate resulted in little difference to the residual momentum of the penetra-
tor core.
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EXPERIMENTAL PROGRAMME

In each experiment, four float glass plates (supplied by Pilkington plc) were used, spa-
ced at 0.0, 1.5, 2.5 and 5.0 mm. For each experiment the thickness of the plate remained
the same whilst the spacing between the individual plates was varied. The thickness’ un-
der investigation were 3, 4, 6, 8 and 12 mm. Each plate had a cross sectional area of 120 ×
120 mm square.

For each target configuration a 7.62 mm NATO ball round was fired at the centre of
the plates using a standard 7.62 mm proof barrel. The velocity of the round was 809 
±10 m/s. A CORDIN model 220 high speed digital camera was used to record the perfora-
tion of the plates.

NUMERICAL PROGRAMME

Numerical simulations were conducted using the non-linear transient dynamic Hydro-
code AUTODYN-2D. All simulations were two-dimensional using axial symmetry. All
material models were retrieved from the existing AUTODYN database. The mesh de-
scription for the bullet and the NATO bullet details are given in Fig. 1 and Table 1 respec-
tively.

Figure 1: Mesh description of the 7.62 mm Table 1: Bullet details.
NATO Ball round.

The Lead Antinomy core and the Gilding metal models incorporated a Linear equa-
tion of state and a Steinberg-Guinan strength model. An instantaneous geometric strain of
300% was chosen for the Erosion model. This model description was chosen, as it has
proved effective at modelling the deformation of a 7.62 mm NATO Ball round penetrat-
ing a variety of targets [1]. All material parameters were retrieved from the AUTODYN
material library [2].

The Float glass was modelled using a Polynomial equation of state and the Johnson-
Holmquist failure model [3]. Each glass plate was modelled using square cells of 0.5 mm
by 0.5 mm.
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Calibre 7.62×51mm NATO
Type Ball
Core Lead Antimony
Bullet Diameter 7.82mm
Bullet weight 9.65g
Core weight 7.39g
Muzzle velocity 809±10m/s



Validation of numerical model
Reasonable confidence in the numerical model was attained by comparing the num-

erical results with high-speed photographs. Correlating the CORDIN digital photographs
with the AUTODYN slides revealed a reasonable prediction of damage within the glass
and projectile deceleration.

Figure 2: Comparison of experimental and numerical results for 6 mm glass plates separa-
ted by (a) 0.0 mm (b) 1.5 mm and (c) 2.5 mm.

A comparison of experimental and numerical results is shown above for a variety of
target spacing and time resolution (Fig. 2). The light areas in the high speed photographs
indicate comminuted glass.

OBSERVATIONS

Experimental
On impact, the glass material in contact with the projectile fails due to shear induced

microcracking. Due to the relatively low fracture toughness of floatglass, only a small
proportion of the kinetic energy of the projectile is transferred to the glass for the genera-
tion of new fracture surfaces. Instead, a far greater proportion of the kinetic energy is
transferred into kinetic energy of the glass fragments. Therefore during each successive
perforation, comminuted glass is accelerated from rest toward the next plate until finally a
plume of glass exits the array as the final target is perforated. A measure of the amount of
momentum given to the glass plume was recorded by a calibrated Ballistic Pendulum. For
12 mm thick glass targets with inter-plate spacing of 0.0, 1.5, 2.5 mm and 5 mm the pro-
jectile did not perforate the final glass plate, instead a scab of fragmented glass was acce-
lerated toward the pendulum. Initial measurements of the momentum along the axis of
penetration of this material revealed values of around 50% of the initial projectile mo-
mentum. Furthermore it was observed that the nature of the material ejected in the oppo-
site direction to projectile motion changed as the spacing was varied.
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Figure 3: Change of front-plate ejecta with 8 mm plate inter-spacing of (a) 0.0 mm, 
(b) 2.5 mm and (c) 5.0 mm.

Fig. 3 above shows how the nature of the ejected material during perforation of each
target array changes as the spacing in-between the target plates are varied from 0.0, 2.5
and 5.0 mm. With a 0.0 mm inter-plate spacing, a large inverse cone of glass ejecta propa-
gates outward. Increasing the spacing between each glass plate results in a change in the
morphology of the ejecta.

It is hypothesised that the reason for this inverse conoid shape is because the penetra-
tor causes a larger diameter of damage (measured from the axis of penetration) as it pas-
ses through each successive plate (see Fig. 4). As each successive plate is penetrated, the
projectile is blunted. Moreover, the comminuted glass is compressed into the front of the
projectile forming a relatively large contact area with the unbroken glass plates. This in-
crease in the contact area results in a larger distribution of contact pressure (according to
Hertzian theory [4]) resulting in a larger degree of damage to subsequent plates. This phe-
nomenon was observed in the numerical simulations (see Fig. 4). Due to the confinement
offered by subsequent plates, the comminuted material that is formed is then forced to
flow in the opposite direction to the projectile due to confinement.

Increasing the spacing in-between each plate results in a reduction in the amount of
glass that is ejected via the front plate. This is a result of the reduction of confinement. In-
stead this material is free to flow into the gaps in-between each plate.

As the projectile perforates each successive plate very little damage can be observed
via high-speed photography as the glass is comminuted and therefore its refractive index
is changed [5].

The glass arrays were unconfined and therefore extensive fragmentation prevented
any meaningful post perforation data being acquired. 

In the experiments, the 7.62 mm NATO Ball round was stopped by 4×12 mm glass
plates (all spacings). This corresponds to an areal density of 121.4 kg/m2.

Numerical
The numerical simulations provided some useful insight into the perforation mecha-

nics of the 7.62 mm round through spaced glass targets. However, the results and their
interpretation are limited because of the Lagrangian approach used in this programme.
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A comprehensive study of the perforation of the 7.62 mm NATO Ball round through
four plates of float glass with thicknesses of 3, 4, 6, 8 and 12 mm was conducted. For each
thickness of glass the inter-spacing between each plate was varied: 0.0, 1.5, 2.5 and 
5.0 mm. For each simulation, the erosion of the Lagrangian cells was monitored to ensure
that no misleading results were produced.

Figure 4: Perforation of 6 mm thick glass plates separated by 2.5 mm.

For each target system, a solid glass block consistently reduced the momentum of the
bullet better than a target system using spaced glass. At higher areal densities, the effect of
spacing on the bullet’s residual momentum was negligible. The effect was more pro-
nounced with glass arrays with lower areal densities (see Fig. 5). Increasing the spacing
between each glass plate generally reduced the array’s protective capability by a small
amount.

Figure 5: Variation of the simulated residual momentum of the lead core with areal den-
sity of the target array.
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Fig. 4 shows the simulated progression of the bullet through a glass target array of 
4×6 mm plates each separated by 2.5 mm. Initially the projectile penetrates the first plate
causing extensive damage to the localised area around the axis of penetration. This com-
minuted material is accelerated forward to the second glass plate. As the projectile passes
through each successive plate, it is blunted thereby suffering a reduction in kinetic energy
density. Moreover, a relatively wide hemisphere of comminuted glass is pushed ahead of
the penetrator causing damage to the next plate. As the fully comminuted material posses-
ses no shear strength, it readily flows into the gap in-between the plates. If the comminu-
ted material is confined and unable to move into the gap in-between the plates, the projec-
tile is subjected to a small amount of erosion. As each successive plate is perforated the
diameter of damage in that plate extends further than that experienced by the previous
plate.

The numerical model did not replicate successfully the inverse conical debris cloud
ejected from the front plate of the 12 mm plate array (see Fig. 3a). However, some corre-
lation was observed between the numerical and the experimental results for the arrays
consisting of thinner plates. Due to the limitations of the meshed Lagrangian approach
used in this numerical programme (namely erosion and material tracking), it is intended
to explore this phenomenon further using gridless methods.

The numerical simulations correctly predicted that the bullet would be stopped by
4×12 mm floatglass plates (any spacings).

CONCLUDING REMARKS

An experimental and numerical programme has been conducted to evaluate how a
7.62 mm NATO ball round perforates a spaced glass system. In this instance the numeri-
cal programme provided an insight into the failure mechanisms associated with spaced
glass perforation. However, it did not exactly replicate the experimentally observed phe-
nomena.

The mechanics of perforation is affected by the degree of spacing between each suc-
cessive plate. The main influence on the projectile is the formation and dissipation of the
comminuted glass. Where spacing exists, the comminuted material is able to flow in-be-
tween the glass plate resulting in a clearer path for the projectile. However, the protective
capability of the array was only reduced by a relatively small amount. Consistently the
solid float glass block provided the best protection.
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