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TERMINAL BALLISTICS OF EFPs — A NUMERICAL
COMPARATIVE STUDY BETWEEN HOLLOW AND SOLID
SIMULANTS

E Rondot

19, French-German Research I nstitute of Saint-Louis, 68301 Saint-Louis, France

A numerical study was undertaken to investigate the penetration and the perfo-
ration capabilities at normal incidence of a hollow tantalum EFP simulant
against armor steel, within the range of impact velocity between 1500 m/s and
2500 m/s. The results are compared with the performances of a solid tantalum
cylinder of the same total length and mass, and with published data relative to
an aerodynamically optimized iron EFP simulant, which is 60% longer. Against
the semi-infinite target, the difference between the hollow and the solid shape
reaches —30% at 1500 m/s and —15% at 2500 m/s. The tantalum hollow projec-
tile retains the advantage over the iron simulant: from 20% at 1500 m/sto 10%
at 2500 m/s. Asregardsto perforation capabilities, the margin is roughly about
10% in favor of the solid shape. Compared with iron, the performances of the
hollow tantalum simulant are attractive up to 2300 m/s, with an advantage of
15% at 1500 m/s. At higher velocities, the iron candidate turnsits length to ac-
count.

INTRODUCTION

Because of its high density combined with a quite high ductility, tantalum is reco-
gnized to be amaterial of choice for Explosively Formed Projectile (EFP) applications. It
isused asaliner materia in existing systems (BONUS, SADARM, SMArt). To fulfill the
aerodynamic requirements, i.e. to hit the target under satisfying impact conditions after a
stand-off about 1000-charge-caliber, the projectile must be somewhat hollow with a
flared afterbody or fins. Nevertheless, published papers dealing with Terminal Ballistics
of EFPs often consider solid shaped projectiles[1,2]. Most of the time there are cylinders
with a hemispherical forebody. This paper tries to give an objective evaluation of the pe-
netration and perforation capabilities of a more representative projectile, taking into ac-
count realistic parameters of today: degree of slenderness L/D, degree of solidity, impact
velocity... For comparison, this study includes results achievable by a solid cylinder of
the same total length. Because iron can compete with tantalum under specific conditions
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[1,3], results obtained with tantalum are a so compared with published data concerning an
idealized view of what could be an aerodynamically optimized iron EFP[4].

BASICS

Simulants Investigated

a) Hollow Tantalem Progectle

b Solil Tantalum Propectils
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Figure 1. Simulantsinvestigated (axisymmetrical shapes).
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The projectiles investigated are presented in Fig 1. They are axisymmetrical. Dimen-
sionsare expressed in mm. For convenience, mass of the simulantswasfixed at 1 kg. The
hollow tantalum projectile (HTP) has a L/D-ratio of 4. The flare diameter is approxima:
tely twice the head diameter. The degree of solidity isabout 50%. For asametotal length,
the solid tantalum projectile (STP) shows a L/D-ratio of 4.4. The length of the optimized
iron projectile (OIP) takes into account the laboratory state of the art [3]. More details on
this geometry can be found in [4]. The original simulant was scaled up for comparison at
constant mass. The performances were studied within avelocity range between 1500 m/s
and 2500 m/s.

Numerical Simulation Approach

For our purpose, numerical simulations were carried out using the Eulerian capability
of OTI*HULL software [5], amulti-material hydrocode featuring a secondorder accurate
scheme. Both the projectile and the target were described using the Mie-Gruneisen equa-
tion of state and an elastic-plastic constitutive law based on the Von Misesyield criterion.
The failure behavior of the target was treated using the “P/Y failure curve’ capability of
the code. It isrecognized that strain to failure of ductile high-strength steel s depends mar-
kedly on the triaxial stress-state which may be characterized by P/Y, where P represents
the mean stress or pressure and Y denotesthe effective stress: Y =v'3J,, Jo referred asthe
second deviatoric stress invariant. Fracture is initiated when the maximum principal
strain exceeds the fracture surface A = f (P/Y). This critical strain to failure is used as a
simpleinstantaneous failure criterion.

Two types of targets were investigated: a monolithic target, @ 500 mm and 320 mm
thick, to evaluate the penetration performance, and a @ 500 mm plate of varying thickness
to study the perforation capability at normal incidence. The targets are made of “classic”
French armor steel MARS 190. Their lateral dimensions are more than 15 times the pro-
jectile head diameter. The limit of perforation is determined as the limit thickness above
which no fragment is gjected from the rear surface of the plate.

Mesh resolution is clearly an important factor in the successful execution of the simu-
lations. Impact of the various projectiles was simulated using a 1 mm square constant
mesh size for the region of most interest. This corresponds to 30 cells across the diameter
of the projectile. Beyond this strong interaction region including the entire thickness of
the target, zones were increased at an expansion ratio of 2%. Lagrange trace particles
wereinserted into the projectilesto reveal the material flow. Thisnumerical approach was
validated by previousworks[6].

RESULTS AND DISCUSSION
Penetration Capabilities

The depth of penetration into the semi-infinite target was firstly reviewed. Examples
of crater profiles at 2100 m/s are plotted in Fig 2. A penetration of 121 mm is achieved
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with the hollow tantalum simulant, while the solid cylinder performs 143 mm. The per-
formance of theiron candidateislimited to 106 mm.
lal ikl el

e —
il

Figure 2. Penetration profilesat 2100 m/s:
(a) Optimized Iron Projectile (b) Hollow Tantalum Projectile (¢) Solid Tantalum Projectile.
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Figure 3. Penetration capabilities against armor steel.

The evolution of depth of penetration versus the impact velocity is shown in Fig. 3.
For a same length of projectile, the difference between the solid cylinder and the hollow
shape reaches 40% at 1500 m/s and 15% at 2500 m/s. Compared with the iron simulant,
which is 60% longer, tantalum hollow projectile retains the advantage over the velocity
range investigated: from 20% at 1500 m/s to 10% at 2500 m/s. In other words, to reach
the same level of performance as the solid tantalum projectile at 1800 m/s, the hollow si-
mulant should hit the target with an impact velocity around 2200 m/s. To compete with
tantalum, theiron projectile should impact at 2400 m/s.
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Perforation Capabilities

Asit can be seen on Fig. 4, the margin between hollow and solid tantalum simulantsis
about —10% over the whole velocity range. Compared with iron, the performances of the
hollow tantalum projectile are attractive up to 2300 m/s, with an advantage of about 15%
at 1500 m/s. At higher velocities, the iron candidate turnsits length to account. To give an
example: to get the same power of perforation as the solid projectile at 1800 m/s, the im-
pact velocity of the hollow tantalum simulant should be 2000 m/s. To compete, the iron
projectile should strike at 2100 m/s. It is worth mentioning that presented results relative
to the solid cylinder, STP, are consistent with published datafrom Weimann [1].
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Figure 4. Perforation capabilities against armor steel.
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Figure 5. Comparative performances at 2100 m/s against a 160 mm thick armor steel
plate. Snapshotsat time =0 ps— 100 ps— 200 ps—400 us
(a) Hollow Tantalum Projectile (b) Solid Tantalum Projectile (c) Optimized Iron Projectile.

Fig. Sillustrates the behavior of the projectiles when impacting a 160 mm thick armor
stedl plate at 2100 m/s. Whilethe iron candidate is stopped into the target, the hollow tan-
talum simulant just emerges from the rear side of the plate. Simulationsindicate aresidual
velocity around 50 m/s. The solid cylinder clearly defeatsthe target. The velocity of frag-
ments approximates 400-500 m/s.

Noteworthy is that none of the formulae in the literature can predict with a satisfying
accuracy the performance of EFP-like projectiles over the velocity range investigated.
First, because the shape of the projectiles are half-way between the sphere and the rod
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(L/D > 10). Then, because even high, the impact velocities do not reach the hydrodyna-
mic regime. Most of the empirical relations proposed to correlate with ballistic data are
derived from Jacob de Marrerelation (1) where M, D and V denote the mass, the diameter
and the velocity of the projectile, and T isthe target limit thickness perforated. o, 3 and C
are empirical, best fit parameters. In his original paper [7], de Marre gave the formula
witha=14and3=1,5.

MV2= C DBTa 1)
CONCLUSIONS

The penetration and the perforation capabilities of a 50%-hollow tantalum EFP simu-
lant against armor steel have been investigated for impact velocities ranging between
1500 m/sand 2500 m/s. Decrease in performance due to hollowness has been evaluated in
comparison with a solid shaped projectile of the same total length and mass. A maximum
loss of 30% is observed at lowest velocities against the semi-infinite target. With regards
to the perforation capabilities, the loss of performance is about 10% over the whole velo-
city range. Only this order of magnitude should be kept in mind since the semi-infinite
configurationisjust an academic target, unknown to the battlefield!

To compete with tantalum, iron EFPs should be more elongated and more rapid: 60%
longer and with an impact velocity 100 m/s or 300 m/s superior to hollow and solid tanta-
lum projectilesrespectively.
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