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Performances and behaviour of shaped charges with tungsten/copper pseudo-
aloy liners are presented. After a first series of test with different liner thick-
nesses, the almost optimal charge has been analysed more in detail. The pene-
tration power is significantly greater than those obtained with the copper
reference charge up to stand-offs of 25 calibres and top values of 11 calibres
have been measured against RHA targets. The observed stand-off behaviour of
the WCu-charge cannot be explained by the classical penetration model. By
substitut-ing modified and yet very rough hypothesesit was possible to obtain a
much better agreement with the measured penetrations

INTRODUCTION

Shaped charges with a penetration capability of 10 calibres or more offer agreat inte-
rest for upgrading existing antitank systems and represent areal threat for actual armours.
After the publication of informations claiming that such performances had been realised
with tungsten/copper pseudo-aloy liners [1-4], we decided to verify these affirmations
because they were in contradiction with previous results obtained with high temperature
isostatically pressed (HIP) liners of WCu- and WNiFe-alloys [5,6]. The poor penetration
power of these 40 mm charges was due to strongly curved or divergent jets.

CHARACTERISTICS OF THE SHAPED CHARGE

Having found a supplier for the WCu-liners, we started afirst series of experimentsto
confirm the potential of such charges and to optimise the one selected for the tests. We
chose avery simple 100 mm shaped charge (Fig. 1) with aconical liner of constant thick-
ness, a precision initiation and a quasi-isostatically pressed explosive body of Octastit 8
(PBX with 95% HMX).
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Threetypes of linerswith different
thicknesses have been manufactured
from preforms of the WCu-pseudo-al-
loy K25C with adensity of 14.8 g/lcm3
supplied from Plansee: a2.5 mm liner

P B having the same dimensions asthelin-
PiC-Boowie
Octusd 0 WEd - b er of the copper reference charge, a
sy e wRmimnte 15 mm liner having about the same
Figurel: Designof thesimple 100 mmshaped  surface density as the copper one and
charge used for thetests. anintermediate 2.0 mm liner.
PRELIMINARY TESTS

The first series of tests against homogeneous steel targets (hardness of 239 HB) at
stand-offs between 2.5 and 25 calibres showed that most of the results obtained with the
WCu-charges and the three liner thicknesses laid over the corresponding values of the re-

1200 ot ettt ference copper charge and that the
maximum of the stand-off curve was
shifted to 10-12.5 calibres. The best
penetration results (10-11 calibres)
were obtained with the 1.5 mm liners
at stand-offs of 7.5 and 10 calibres
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(Figs.2and 3).
400 Three complementary tests made
o i mewremm with a reduced liner thickness of
200 A Menaues Wou25mm 1 1.0 mm presented a decrease of per-

—O-  Meanvalues Cu25mm

formance due to higher jet divergence
00 25‘0 560 75‘0 10‘00 12‘50 15‘00 17‘50 20‘00 22‘50 25‘00 andlnaab'“tles.

Standoff H  {mm] A second series of experiments
Figure 2: Mean values of the penetration of the  was therefore realised with the almost
WCu-charge with three different liner thicknes-  optimal 1.5 mm chargeto get morein-
ses (1.5, 2.0 and 2.5 mm) compared with the formation on the penetration capabil-
stand-off curve of the reference charge with a ity and on the jet fragmentation dyna-
copper liner of 2.5 mm. mics.
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RESULTS WITH THE 1.5 mm WCu-LINER

Stand-off curve

The results obtained against har-
dened steel (239 HB) and RHA (302
HB) targets confirmed the previousre-
sults with further shots over 10 cali-
bres and even one over 12 cdlibres.
The mean penetration increases as the
stand-off increasesfrom 2.5 to 10 cali-
bres, where a value of about 11 cali-
bres has been obtained. For greater
stand-offs the reduction of the pene-
tration is accompanied with a signifi- . L
Cant increa% Of the dISperSIOH A” o] 250 500 750 1000 1250 1500 1750 2000 2250 2500
measured values with one exception Standoft K [mm]
are nevertheless greater than the cor-  Figure 3: Measured penetration of WCu-char-
responding mean penetration measu-  ges with the 1.5 mm liner compared with the
red with the copper reference charge.  stand-off curve of the reference charge with a
These results show that good perfor-  copper liner of 2.5 mm having about the same
mances can be obtained with tungsten  surface density asthe WCu liner.
pseudo-alloy shaped charges at stand-
offsupto 25 calibres.
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Jet characteristics

Morphology, dynamics and fragmentation of the WCu-jet have been analysed and
measured from X-ray picturestaken at different timeintervalsafter initiation (Fig. 4). The
fragmentation of the WCu-jet isvery different and occursvery early in comparison to that
of copper jets. Fine shear cracks can be observed over the entire jet section short time

—3-

——

: —
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Figure4: X-ray pictures of the jet of the WCu-charge with the 1.5 mm thick liner. The
timeinterval between the picturesisabout 20 us.
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after the jet formation indicating that the conventional stretching phase must be very short
(Fig. 5). The fragments resulting from these shear fractures are small at jet tip and greater
at thetail (Fig. 6). Most of the greatest fragments are not stable and subject to further divi-
sionsresulting in great number of smaller particles. The spatial distribution of these parti-
clesis homogenous without formation of gaps or long and massive fragments as observed
on copper jets. During the break-up and stretching phases no radial instabilities were ob-
served with the charges having aliner thickness equal or gre-
ater than 1.5 mm. The strong fragmented jet is not spreading
out, so that the diameters of the jet elements can be conside-
red as constant.

The measured jet tip and jet tail velocities are constant
over the observable distance of 2 meters and the velocity of
thejet elementsvarieslinearly along thejet.

1

[

Figure 5: Detail picture of the middle part of a moderately
stretched WCu-jet showing theinitial shear fractures.

Figure 6 left: Structure of the rear part of astretched jet hav-
ing atotal length of 1.8 m. The top picture corresponds ab-
out to the middle of the jet and the bottom picture to the jet
tail. Each pictureis 5 cm long and the distance between the
picturesis10 cm.

i

Results against composite targets

Despite these good performances and the very regular quasi-cylindrical craters bored
in the homogeneous steel targets, catastrophic results were obtained against triple com-
posite targets due to very strong interaction between the highly fragmented WCu-jet and
the walls of the small crater in the composite elements. The previously observed jet co-
herence (Fig. 4) was destroyed causing spreading and strong erosion of the jet particles,
resulting in very poor penetration efficiency (Fig. 7).

-
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Figure 7. X-ray pictures of the jet before (top) and after the penetration in the composite
element showing the very strong erosion of thejet.
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CALCULATION OF THE STAND-OFF CURVE

Classical penetration model

With experimental parameters of the jet dynamics measured on X-ray pictures, we
tried to calculate the stand-off curve of the 1.5 mm WCu-charge with a classical penetra-
tion model giving satisfactory results for copper and molybdenum charges (Fig. 8). This
model postulates a constant stretching of the jet elements until break-up occurs. During

this stretching phase the initial
length AL of ajet element ismul-
tiplied by atime dependant factor

. ' I\, whilst the density practically
r . . Lo remains equal to the initial liner
I h . h density pj, the diameter decrea-
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sing to ensure the conservation of
mass. After break-up and particle
formation the stretching stops
and the elongation factor A=Ag,
thelength of the element AgAL as
well asthe maximal potential pe-

Figure 8: Calculation hypotheses of theclassical pe-  netration capability APg remain

netration model.

constant.

None of the stand-off curves calculated with the classical model and with different
sets of parameters for the jet break-up and divergence could be fitted on the measured
stand-off curves of the WCu shaped charge with the 1.5 mmthick liner (Fig. 9).

Penetration 239 HB [Caliber]

— Classical modell
2 O Measured values WCu 1.5 mm
® Mean values WCu 1.5 mm

0 2 4 6 8 10 12 14 186 18 20 22 24
Standoftf [Caliber]

Figure 9: The classical penetration model va-
lid for copper or molybdenum charges is not
adequate to describe the stand-off behaviour
of WCu-charges.

The initial slope of the calculated
stand-off curve is to steep in compari-
son with the observed one. As a conse-
quence of the rapid increase of the pe-
netration at low stand-offs the position
of the maximum of the curve cannot be
fitted on the observed optimum stand-
off of 10-12 calibres.

These results indicate that the pos-
tulated stretching and penetration pro-
cesses of the classical model are not va-
lid for WCu-jets.
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Modified penetration model for WCu-jets

By substituting modified and yet very rough hypothesesit is possible to obtain amuch
better agreement with the measured penetrations up to a stand-off of about 13 calibres.
The new model is based on the observations of the specific behaviour of the WCu-jets
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Figure 10: Calculation hypotheses for the modified
penetration model.

characterised by an early break-
up and a very strong jet fragmen-
tation. After break-up, the jet ele-
ments can be considered as an
accumulation of numerous un-
bounded little particles. In oppo-
sition to the copper jet elements,
the length of these elements con-
tinuesto grow with a correspond-
ing reduction of the mean density.
This density is equal to pj/Ak if
the diameter ® of the element is
supposed to be constant. Introduc-
ing this density value and AgAL
for the length in the simple pene-

tration formula, we found that the potential penetration capability of the element is pro-
portional to (A\)2. This penetration is |less than the penetration obtained in the case of a
conventional stretching until (A\)2 becomes equal to the maximal stretching factor Ag
that could be reached with a solid, homogeneous jet element having a density p; (Figs. 8
and 10). If the stretching factor is further increased the penetration of the WCu-jet ele-
ment becomes greater than the maximal penetration APg of aconventionally stretched so-

lid element (fig. 8).

ted
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¢ Measured values WCu 1.5 mm

Standoff H [Callber]
Figure 11: The modified model allows amuch
better agreement with the measured values up
to stand-offs of about 12.5 calibresif the para-
meter for jet divergence is set between 1.5
10-3and 2.010-3.
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After introduction of these very
simple and rough hypothesesin the cal-
culation model, it was possible to ob-
tain a much better agreement with the
measured penetrations of the WCu-
charge up to astand-off of about 13 cal-
ibres (Fig. 11) where a non implemen-

additional disturbance of the

2 1 penetration processtakes place.
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CONCLUSIONS

This study demonstrates that excellent penetrations up to stand-offs of 25 calibres can
be obtained with tungsten/copper pseudo-alloy shaped charges having a sufficient liner
thickness. The tests done against composite armour confirm once more that a penetration
capahility of over Imeter in RHA-targetsis not a sufficient condition to defeat them. The
initial part of the stand-off curve of the WCu-charge cannot be fitted correctly with the
conventional penetration model conceived for copper charges. By introducing new and
simple calculation hypotheses better agreement with the measurement could be obtained
up to astandoff of about 13 calibres. Thismodel should also be valid for other highly par-
ticulated or powder jets.
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