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INTRODUCTION

The numerical simulation of a tandem warhead (see fig.1) requires the description of
the penetration process of the shaped charge jet and the KE projectile as well as their
interaction. The most important phenomena are:
• Shaped charge jet formation (velocity gradient)
• Shaped charge stretching during penetration process
• Erosion of jet and target during penetration
• Crater formation including damage of concrete target
• KE projectile penetration (nearly rigid body penetration)

The shaped charge jet is explicitly modeled with a conical shape (see fig.1) and the
corresponding velocity gradient between jet tip and jet tail. The data for this explicit jet
description (jet radius as a function of jet velocity) can come either from experiment or
from simulations with empirical codes for shaped charge analysis. The simulation model
thus includes grids for the shaped charge jet, the penetrator case and the concrete target.
In this paper we use a Lagrange description for all these grids. This is the procedure that
is the most convenient one to model the above mentioned physical processes. 

An important point in the analysis is an exact simulation of the crater profile created
by the shaped charge jet and the reduction of the strength of the penetrated concrete tar-
get. The available material model for concrete has the capability for this type of analysis.
Additionally the model includes the dynamic interaction of the following KE projectile

Tandem warhead systems consist of a precursor shaped charge and a following
kinetic energy (KE) projectile containing a high explosive filling. They are de-
signed to penetrate hardened structures especially targets with concrete layers.
This paper presents numerical simulations to analyze the penetration process of
tandem systems. This includes  detailed material models  especially the des-
cription of concrete behavior under highly dynamic loads.  Simulation models
for the penetration of shaped charge jets and KE projectiles in concrete are
presented and the combined performance in the tandem system is analyzed. Ex-
perimental date are used to verify the simulation results. 
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with the crater walls of the target. The presented procedure thus allows the assessment of
the performance of tandem warhead systems. The important steps for this simulation (ma-
terial model for concrete, shaped charge penetration, KE projectile penetration, complete
sequence of tandem system) are presented in the following sections.

Fig. 1 – Tandem warhead and explicit Fig. 2 – Schematic representation of
modeling of shaped charge jet. limit surfaces of concrete.

MATERIAL DESCRIPTION

The simulation contains the three materials: concrete target, high strength steel pene-
trator case and aluminum jet. The two metals steel and aluminum are described with a
Johnson Cook model for the deviatoric strength behavior. Very important is the material
description of the concrete target, especially the weakening of the target due to the pas-
sage of the shaped charge jet. For this purpose the RHT model, developed at EMI is used
[1].

Concrete has the following experimental material properties:
• Tensile strength is 1/10 of compressive strength
• Shear strength is pressure dependent
• Accumulation of damage (failure surface depends on damage)
• Porosity and existence of micro cracks between mortar and aggregates

The description of these phenomena requires a complex model for the characteriza-
tion of concrete. The EMI RHT model includes the static as well as the dynamic range
and thus can be used for penetration processes of shaped charge jets and KE penetrators.
The following gives a short summary of the main properties of the model:
• Porous equation of state
• Limit surfaces pressure dependent (elastic, failure and residual strength)
• Limit surfaces depend on all 3 invariants of stress tensor
• Strain rate effects
• Damage characterization (essential features are taken from [2])

Fig. 2 shows the schematic location of the different limit surfaces in the stress space
especially the change of the failure surface due to damage development. The damage
model is of special importance because it describes the weakening of the concrete target
due the penetration of the shaped charge jet. Damage occurs as soon as the failure surface
in the stress space is reached during a loading process. In the uniaxial compression test
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damage occurs in the stress strain diagram in the region following the maximum com-
pression stress. The material behavior is then characterized by macroscopic crack deve-
lopment. The following phenomena have to be described:
• Reduction of the failure surface with increasing damage (material with a complete

damage can not sustain any tensile stresses any more)
• Reduction of elastic constants

Damage accumulation is described by a damage variable D that depends on the per-
manent plastic and volumetric strains. The parameter D is in the range 0 to 1, where the
parameter 0 corresponds to undamaged material and the value of 1 corresponds to maxi-
mum damage. The numerical simulation gives the damage variable within the concrete
target and thus allows the calculation of the strength reduction caused by the penetration
of the shaped charge jet into the concrete.

CRATER FORMATION BY SHAPED CHARGE JET

The precursor shaped charge is modeled explicitly. The actual shape depends on the
stand off between shaped charge and target. This is due to the velocity gradient within the
jet that causes continuous stretching of the jet until break up into individual particles. The
physical properties of the jet at the time of impact on the target are:
• Conical shape (small radius at jet tip and continuously increasing to the jet tail)
• Aluminum jet
• Jet diameter at tip 5.4 mm
• Jet diameter at end 10.4 mm
• Jet length 180 mm
• Velocity gradient (6900 m/sec at tip, 2000 m/sec at tail)

The shaped charge jet is modeled with a high resolution mesh. It is divided in 70 parts
with equal velocity which corresponds to a resolution of the velocity gradient in intervals
of 100 m/sec.

The shaped charge jet stretching is a dynamic process with high strain rates and leads
after a certain time to the break up of the jet into individual particles. From experiment it
is known that the strains occurring during jet stretching are in the range of 1200%. This
must be taken into account in the simulations, too. The simulation code uses an erosion al-
gorithm that deletes elements from the calculation as soon as a predefined value of the ef-
fective plastic strains is exceeded. This value is set to 12 which corresponds to the above
mentioned experimental results. Together with the high resolution grid this allows the si-
mulation of highly dynamic penetration processes.

Fig. 3 shows the conical shaped charge jet at time of impact and the corresponding
crater profile after complete erosion of the jet 0.4 msec later. A significant region of the
target shows reduced strength due to the passage of the jet (damage parameter shows va-
lues near 1, which means that the material cannot longer sustain tensile stresses). The pe-
netration depth is 610 mm and is in very good agreement with the results from empirical
codes used for shaped charge design.
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Fig. 3 – Explicitly modeled shaped charge jet and created profile.

An additional check of the penetration depth can be done with the help of analytical
formulae describing the penetration of stretching jets in the purely hydrodynamic limit.
The penetration depth P of a continuously stretching jet follows (see e.g.[3]):

with the notation:
Z0 virtual origin of jet
vs jet tip velocity
ve jet tail velocity
ρt target density
ρj jet density
Using the parameters of the above defined shaped charge jet the analytical penetration

depth is 680 mm. The numerical value is with 610 mm lower which can be explained by
the fact that the numerical model shows not a continuous velocity gradient (but intervals
of 100 m/sec) and mainly that the simulation includes strength effects which reduce the
achieved penetration. Therefore it can be concluded that the numerical simulation gives
reasonable results for the penetration depth compared with empirical codes as well as
analytical models. This gives the confidence that the whole crater profile (radius versus
depth) is reasonably reproduced.
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KE PROJECTILE PENETRATION

In this section results from experiments and simulations on the penetration of KE pro-
jectiles into undamaged concrete are presented (without precursor charge). The following
penetrator design was used:

Caliber 60 mm
Length 508 mm
Mass 6039 g
The target consisted of two concrete blocks of diameter 96 cm, length 1 m and a steel

casing. The concrete compressive strength was 35 N/mm2. The experimental results were
(see [4] and [5] for experimental details and interpretation of penetration depth within
cavity expansion theory):

Impact velocity 509 m/sec
Penetration depth 114.5 cm
Fig. 4 shows the front and rear side of the target after impact of the KE projectile.

Fig. 4 – Front and rear side of concrete target after impact.

The corresponding results from the simulation are shown in fig. 5 with the configura-
tion at the time of impact and after the penetrator came to rest. The calculated penetration
depth is 119 cm and agrees very well the experimental value of 114.5 cm.

Fig. 5 – KE penetrator at impact and at end of penetration.
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TANDEM SYSTEM PERFORMANCE

The assessment of the tandem system efficiency combines the effects of the shaped
charge and the KE penetrator. The numerical simulation includes the penetration process
of the KE projectile into the damaged concrete target from fig. 3. The weakening of the
target is due to the formed crater (reduction of volume) and the reduced strength in the
neighborhood of the jet crater (damage description in the material model). The target
thickness for the simulation was 140 cm. Fig. 6 shows the configuration at time of impact
and 5.5 msec later. At this time the penetrator exits the rear of the target. The damage of
the target is so severe that the penetrator perforates the target with a residual velocity of
225 m/sec. Compared to the KE penetrator performance of 114.5 cm in an undamaged
target the penetration depth in the tandem system is significantly increased. 

Fig. 6a – KE projectile impact target Fig. 6b – KE proectile penetration
on damaged concrete target. in damaged concrete target.

Fig. 6c – KE projectile exits target. Fig. 7 – Velocity of KE projectile for
damaged and undamaged target.

Fig. 7 compares the velocity decay of the KE projectile in the undamaged and dam-
aged concrete targets. The acceleration in the damaged target is lower (the slope of the ve-
locity curve is smaller) and the projectile has a residual velocity of 225m/sec after perfo-
ration of the concrete block.
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The simulations demonstrate the principal feasibility of a complete numerical simula-
tion of the tandem system performance.

SUMMARY

A numerical model for the complete assessment of the tandem warhead performance
against concrete targets has been presented. An important point to analyse were the com-
bined effects of the shaped charge and the KE penetrator. Attention has been addressed to
the material modeling of the concrete target especially to a description of the material da-
mage due to the penetration of the precursor shaped charge to reproduce crater profiles.
The penetration depth produced by shaped charge jets and KE penetrators were verified
with experimental results and analytical, empirical calculations. The performance of the
KE penetrator including a precursor shaped charge is significantly increased.
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