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INTRODUCTION

Electric Armour in its simplest form can consist of two parallel conductive plates con-
nected to opposite poles of a charged high-energy capacitor. An incoming shaped charge
jet can act as the switch. When touchdown on the second electrode occurs, large currents
are able to flow, which cause disruption of the jet.

The principal mechanism is magnetohydrodynamic (MHD) pinch, which causes suc-
cessive segments of the jet to expand rapidly into diffuse toroidal structures [1,2] (Fig. 1).
A secondary mechanism is lateral dispersion of the jet by off-axis forces arising from
interaction of the jet current with the electrodes’ magnetic fields (Fig. 1). This effect is of-
ten slight. But in some cases, pairs of relatively large opposed forces have been observed;
photographs in [3] showed severely bent surrogate jet segments in tests.

At Ballistics 99, the authors’ paper examined analytically the flow of current
into and out of jets orthogonal to electric armour. Near-rotational symmetry
was observed, irrespective of supply geometry. It was thus suggested that the
pairs of large, opposed off-axis forces sometimes observed in experiments
must only appear when the jet is oblique to the target. This rotational symmetry
is here shown to persist for electrodes of any conductivity. Oblique passage of
jets through electrified plates is examined in a further development of our mo-
del. We represent electrodes by infinite half-spaces, but calculation shows that
current is in fact naturally confined within the envelopes of practicably sized
plates. The geometries chosen thus offer reasonable representations of jet, sup-
ply, and electrode currents at practicable frequencies, whilst still offering solu-
ble formulations of the relevant Maxwell’s equations. The computed electrode
currents are presented in graphical form.
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Figure 1. Radiograph of a shaped charge jet penetrating an electric armour array. Motion
is from right to left and arrows represent the notional flow of current.

In [3], the possible role of current supply geometry was examined by modelling the
distribution of currents in perfectly conducting electrodes. It was concluded that current
flow in and out of orthogonal jets was substantially rotationally symmetrical, irrespective
of current supply. The only off-axis forces detected were due to a weak ‘railgun effect’,
acting in the same direction and with the same magnitude all along the jet. It was then
suggested that jet orientation, rather than the details of current supply, must be the source
of the large bending moments observed in the experiments. Here, the possible influence
of finite conductivity in the electrodes is first checked, again in orthogonal geometry.
Body currents replace the surface currents evaluated in [3]. In oblique geometry, large
asymmetries are found. The proximity effect turns out to affect the distribution of current
in the electrodes, and hence the forces acting on jets.

The origin of off-axis forces

The current distributions within the electrodes may be visualised in terms of elements,
defined by JdV, representing the proportion of the total current flowing through an infini-
tesimal volume, dV. The Biot-Savart law [4] gives the magnetic field due to the current in
the whole of the electrode at any point with position vector r relative to JdV as:

(1)

The cross product in (1) implies that the magnetic field associated with each current
filament is rotationally symmetrical about J. By considering the complete current distri-
bution as the sum over an infinite number of current elements, it follows that the magnetic
field external to an electrode will be wrapped around the plate. The force on any current
filament deseribed by r = r(s) in the magnetic field of the plate is given by
dF=Iδ(r–r(s))dl × B [4]. In general, the jet and B are not parallel, implying that the resul-
tant force per unit length on any segment of current carrying jet must be at right angles to
its axis.
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FINITE CONDUCTIVITY

The model geometry in this case follows
Fig. (2). Two infinite conductors separated
by a vacuum are connected by two perpen-
dicular (i.e. θ = ρ/2) filaments carrying cur-
rents, ±I(t).

Modelling the electrodes as half-spaces,
with just three regions in xyz-space to consi-
der, simplifies the solution of Maxwell’s
equations. Edge effects can be neglected if
the jet is many times its own diameter dis-
tant from the electrode boundaries.

The fact that there are two filaments is
important. One represents the jet as it passes through the electric armour. The second is
partly an artificial construct, providing a return path to prevent build-up of charge. How-
ever, the ‘dummy’ jet is also the image current of the real jet, so current density vectors
become parallel to each other, and perpendicular to the intersection of the symmetry plane
and the electrodes. It is felt that this provides an acceptable representation of the supply to
real electrodes.

With finite conductivity, in general there will be a non-zero electric field within the
plates. Thus Maxwell’s equations must be solved in all three regions. Instead of surface
currents, body currents, J±, flow (the + and – denoting the two electrodes).

Governing equations

Maxwell’s equations, which govern the xyzt-dependence of the electromagnetic
fields, written in terms of a scalar and vector potential, ϕ and A respectively are [3, 5]:

∇ 2ϕi = –ρi/er,i , ∇ 2Ai = –µr,iJi and ∇ ·Ai = (δi,2 –1)µr,iσϕi. (2)

The subscript i, running from 1 to 3, denotes the three regions, upper electrode, va-
cuum and lower electrode. δi,j represents Kronecker’s symbol defined as 0 unless i = j
when it is unity. The first two are Poisson-type equations, their right hand sides acting as
source terms generating the electromagnetic fields. There is no free charge in the system,
so ρ = 0. Using the Dirac delta function, δ, the current filaments are defined as

J = I(t)δ(y){δ(x – X)k – δ(x – X)k}. (3)

The third equation in (2) is the gauge condition. Like constants of integration in the
solution of differential equations, there is freedom to select this. The choice of gauge for
the electrodes is different to that for the vacuum; it is informed by a wish to decouple the
2nd-order equations.
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Figure 2. Modelling current distribution
(generalised jet/electrode geometry).



Boundary conditions complete the specification of the model, they are:

(4)

(5)

(6)

Here [ ] denotes the change in a dependent variable across the bonndaries; the quantity
ρs± represents the surface charge admissible by Maxwell’s equations. Equation (4) states
that far away from the region of interest, an observer is unaware of any disturbances in the
electromagnetic continuum. Equations (5) and (6) are representations of the standard
‘jump conditions’ that define the changes in E and B across a boundary between two dif-
ferent materials [2, 6].

Solution

The method of solution is very similar to that of Tegepoulos and Kriezis [7]: A2, the
vector potential in the vacuum, is split into two components, the first of which represents
that generated by the two filaments. The second represents the response due to the eddy
currents generated within the two electrodes. Fourier transform techniques are used to
solve equations (2).

Results: finite conductivity

Obviously, due to the 3-D nature of the
current distributions, a direct comparison
with the results presented in [3] is not possi-
ble. In a steady state, the current flowing on
the surface of e plates is shown in Figure
(3). The near-rotational symmetry of current
flows around the ends of the filaments is re-
tained. In this case, as before, off-axis forces
due to the asymmetry in the current supply
are small, and constant along the filaments.

OBLIQUE GEOMETRY

In the more general, oblique, geometry there may be other contributing parameters as
well as those due to asymmetric current supplies. For one thing, each jet segment must
travel more nearly parallel to one electrode (at the acute junction), and therefore expe-
rience greater magnetic fields than in the orthogonal case. Furthermore, current may be
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Figure 3. Current distribution on the surfa-
ces of electrodes of finite conductivity con-
nected by orthogonal filaments.



attracted, due to the so-called 'proximity effect', into that zone of the electrode where jet
meets it at an acute angle. This would further increase the magnetic field experienced by
the jet. It was conjectured that these effects might act in synergy. Confirmation of this is
now presented.

The model geometry for considering oblique filaments is as in Fig. (2). Perfectly con-
ducting electrodes effectively reduce to one the number of regions in which Maxwell’s
equations need to be solved. Electrode currents will flow on the surfaces. 

Governing equations

In this case, Maxwell’s equations within the vacuum are:

(7)

where again it will be assumed that ρ = 0, but now

(8)

defining mathematically the two angled current filaments illustrated in Fig. 2.
Simpler equations govern the scalar and vector potentials in the electrodes. Since

within a perfect conductor E = B = J = 0 [8], with a particular choice of gauge it can fur-
ther be shown that:

(9)

Boundary conditions are needed to complete the formulation. At infinity, equation (4)
is again used. Using equation (9), the ‘jump conditions’ of (5) and (6) simplify to:

(10)

(11)

Note the existence of a surface current, Js± representing the electrode current.

Method of solution

A solution to equations (7), (8), (10) and (11) is again found using Fourier Transform
techniques. Multiplying equations (5) by e-iαxe-iβy and integrating yields second order li-
near differential equations in z, parameterisod by α and β.

The solution obtained is made to fit the boundary conditions. In practice, only the
gauge condition and equations (10) are needed to determine the unknowns. (11) simply
provides a way of obtaining expressions for the surface charge and current distributions.
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Results: oblique geometry

The calculated current distributions on the upper and lower electrodes are plotted in
Figures (4) and (5).

In the example shown, electrodes are spaced apart by a distance equal to half of the se-
paration of the midpoints of the two filaments. The components of each vector are inverse
Fourier transforms. These have been calculated numerically using the commercial pack-
age Mathematica 4. The required integration ranges, 0 < α < ∞ and 0 < β < ∞ have been
approximated by 0 < α < 100 and 0 < β < 100 to reduce run-time.

The somewhat unphysical abrupt excursions in numerical values visible in 
places arise from modelling the filament currents as lines. Strictly, from (8), current den-
sity between the plates should exhibit singular behaviour proportional to the sum of
δ(y)δ(x – (X + zcotθ)) and δ(y)δ(x – (X + zcotθ)). This promotes similar behaviour in A2.
In order for Fourier transforms to be able to respond correctly to this impulse-like
behaviour, the complete domain, i.e. (0,∞) × (0,∞), ought to be used as opposed to the
restricted domain. This, however, is incompatible with numerical methods of inverting
the transformation Note that although Fourier transforms were used to compute the current
distributions in the finite-conductivity case earlier in the paper, unphysical behaviour did
not then occur, since closed forms of the inverse transformations existed.

Figure 4. Current distribution on the upper Figure 5. Current distribution on the lower 
electrode. electrode.

CONCLUSIONS 

1. Conductivity

The solution for electrodes of finite conductivity differs somewhat from the work re-
ported previously, due to the finite electric field between the plates. However despite the
existence of z-components in the plate currents, examination of the current density on the
electrode surfaces suggests that the near-radial symmetry about the jets presented in [3] is
retained. Also as in [3], the magnetic field is found to be equivalent to that generated by
two infinitely long filaments, supporting the suggestion that any substantial off-axis for-
ces, when observed in practice, must largely arise due to asymmetries in the jet/plate
interaction geometry.
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2. Oblique jet

The marked asymmetry in the current plots in oblique geometry accords qualitatively
with the experimentally observed direction and magnitude of jet bending.

At each acute junction between jet and electrode, the close proximity of the angled jet
causes extra current to be drawn into nearby regions of the electrode. Asymmetries in the
current distributions, and hence of the magnetic fields, near the junctions are thus even
greater than intuition might suggest. Highly unbalanced forces act upon the jet during its
passage, tending always to drive it away from the regions of high current density in the
electrodes. This explains the S-shaped form into which surrogate copper jets were bent in
the static expenments reported in [3].
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