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ANALYSIS OF ACTIVE PROTECTION SYSTEMS:
WHEN ATHENA MEETS ARENA

P. Wey, V. Fleck and P.-Y. Chanteret

French German Research Ingtitute (ISL), P. O. Box 34, 68301 Saint-Louis, France

The Russian system called ARENA is certainly the most successful active pro-
tection system that has been produced yet. ARENA isintended to protect tanks
from antitank grenadesand ATGMs.

ATHENA is a computer-based simulation program that provides the capability
to explore the value of various hard-kill active protection systems. This paper
illustrates how ATHENA can be used to analyze and optimize some features of
ARENA. The analysis phase is focused on the parameters describing the inter-
cept of an ATGM by means of adirected field of fragments generated by a pro-
tective ammunition. After examining two conflicting system designs, the opti-
mization phase leads to reconsider the design of the protective ammunition.

INTRODUCTION

Active protection systems (APSs) are defensive systems designed to protect armored
vehicles[1, 2, 3, 4]. The goa of an APSisto detect, intercept, destroy or confuse attack-
ing enemy munitions. “Hard kill” systems engage and destroy incoming projectiles be-
fore they impact their intended target. These systems create a zone of protection at a safe
distance around the vehicle. “ Soft kill” systems confuse and divert incoming guided mu-
nitionswith the use of obscurant munitions, jammers or signature reduction measures.

Active protection is one of the key technologies to improve the survivability of future
armored vehicles. It is in fact the central point of the protection concept designated as
“Don’'t be hit” within the frame of the US Future Combat System program. An ideal APS
should create an hemispheric zone of protection around the vehicle and be effective
against the full range of anti-tank weapons. Thus, using APSs should allow to decrease
the mass of passive and reactive armor while increasing the overall survivability of the
vehicle.

As concerns NATO countries, most active protection systems are in research or deve-
lopmental stages. Considering the complexity of such systems, computer-based simula-
tion programs are required to explore and assess the effectiveness of various system de-
signs. ATHENA isthe name of such aprogram.
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As concerns Russia, active protection systems have already been developed. The sys-
tem called ARENA is certainly the most successful APS that have been yet produced.

Therefore, to some extent, ATHENA was bound to meet ARENA. This paper descri-
besthisvery first meeting, i.e. the analysis of ARENA using ATHENA.

ATHENA

Designing active protection systems obviously requires computer simulation when

considering the following issues:

— APSs must be effective in various operational conditions against the full range of cur-
rent and future anti-tank weapons,

— Many technical solutions may be considered as regards the design of the system com-
ponents,

— Assessing the overall system effectiveness cannot be achieved without taking into ac-
count the interdependence of the system components.

ATHENA is a computer-based simulation framework that has been developed by |SL
in order to explore and analyze the design of various active protection systems[5].

The analysis scheme of a specific APS consistsin thefollowing steps: definition of the
critical engagement sequences, assessment of the overall system effectiveness, sensitivity
analysis (i.e. looking for the most significant parameters) and optimization. Theidea sys-
tem should exhibit a maximal effectiveness factor and a minimal sensitivity factor. Fur-
thermore, if the description of an APS isincomplete, ATHENA can be used to determine
the parameters of the missing subsystems so that the overall effectiveness reaches afixed
level.

ATHENA istailored to simulate the basic sequence of events of a hard kill system as
defined in [5]: target! acquisition, launch of the protective elements and target intercept.
ATHENA isaflexiblelibrary of models that are connected together to form the complete
simulation (to some extent, thisis similar to the MultiSIM-IDS architecture [6] that was
developed for the US Army Tank-Automotive and Armament Command). These models
are based on theoretical considerations and/or experimental results. They describe the
physical parameters of each real-world object (target, sensor, launcher and protective ele-
ment) as well as their interaction mechanisms. New models can easily be added to the
framework in order to describe new concepts of APS or to provide higher fidelity simulation
capabilities.

The system capability isthe collective attribute of the performance of its subsystems.
Given an engagement sequence, the overall effectiveness factor Pk is defined as follows:
Pk = Pp Py Pk/q Where Pp = probability of target detection, Py = probability of hit and
Pk /1 = degradation level of thetarget lethality.

1 Asfar asactive protection systems are concerned, the term “target” obviously refers to the incoming anti-
tank ammunition.

906



Analysis Active Protection Systems: When ATHENA meets ARENA

ARENA

ARENA isthelatest generation of Russian APS[1, 2, 4]. It isintended to protect tanks
from antitank grenades and ATGMs, including top-attack ATGMs. The system was re-
vealed in 1992 at the Dubai exhibition. The Russians have successfully demonstrated the
systemto the Germansand Frenchin 1994.

The system incorporates the following engineering solutions:

— Useof amulti-functional millimeter radar with “instant” scanning of all protected sec-
tor to detect and track antitank targets;

— Use of focused instant-effect protective ammunition for aimed destruction of inco-
ming targets,

— Control equipment, represented by a specialized computer that provides automatic
control over radar operation and system asawhole.

Fig. 1 describes the basic features of the system. Protective ammunitions are housed
in silos arranged around the turret. The rack-mounted radar is fixed on the turret roof. In
combat mode of operation, the radar constantly scans for approaching ATGMs and loca
tes any target within 50 meters of the tank. Once the threat is detected, the radar switches
to the target tracking mode, thereby obtaining data on the moving target. After processing
this data, the computer selects one of the silos and fires a small projectile (similar to a
Claymore mine) into the path of the approaching ATGM. At the determined moment, the
computer generates command signals to the selected protective ammunition. The latter
detonates afew meters from the target, generating a directed field of destructive elements
which destroy or disablethetarget to levelswhich are no longer dangerousfor the tank.

Ammunition silos

Radar

Protective
ammunition

Incoming ATGM

Il e T S

50 m Tracking phase 25m Intercept

Figure 1— Schemaof ARENA operations.

Each ammunition covers a given azimuth sector. The protection zones of contiguous
munitions overlap to a generous extent, which allows for multiple intercepts of targets
coming from the same direction. In standard configuration, the total number of protective
ammunitions mounted on the tank is 22—26. Thisis enough to create a zone of protection
that covers both the front and the lateral surfaces of thetank.
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ATHENA MEETS ARENA

Examining the full capabilities of the real ARENA system is beyond the scope of this
paper. Since many features of the system cannot be accessed via public sources, we have
set up atheoretical model of the system, making realistic assumptions for the missing pa-
rameters. This model is focused on the effectiveness of the target intercept by means of a
directed stream of fragments. It does not take into account the detection and acquisition
subsystems.

Simulation models

The protective anmunition is modeled
asacircular fragmentation charge. Thefol-
lowing parameters have been estimated:
charge caliber = 150 mm, total number of
fragments= 400, mass of each fragment =
2 g. According to this data, the pre-frag-
mented liner of the charge is about 6 mm
thick. The field of fragmentsis represented
as an axis-symmetric cone (Fig. 2). The
fragment trajectories within the cone are
supposed to be uniformly distributed. Figure 2 — Field of fragments and target.

The target is a 130 mm caliber ATGM.

The estimation of the target performance degradation is only dependent on the number of
fragments that achieve a direct hit on the shaped charge of the missile (no functional fai-
lure model is taken into account). Experiments conducted at ISL [7] have shown that the
mean value of the degradation level of the shaped charge is about 70% for asingle frag-
ment hit. Thisresult was observed under the following conditions:

shaped charge caliber = 65 mm, fragment mass = 0.5 g, fragment speed = 140 m/s. Extra-
polating this result to a 130 mm caliber shaped charge requires to consider a fragment
mass of 2 g and afragment speed of 1800 m/s (the kinetic energy of the fragment must in-
crease with the caliber cubed). Furthermore, it is assumed that the degradation level in-
creases up to 90% for at least two fragment hits.

Hence, the effectivenessfactor is defined asfollows:

Px =Py ¥0.7 + Py *0.9 (N}

where Pyyq = probability of exactly one hit, Pyo+ = probability of at least two hits. Note
that eq. (1) isapessimistic estimation of the performance degradation.

The probabilistic terms are not computed according to aMonte-Carlo process. In fact,
a geometrical construction of the solid angle that intercept the target is performed. This
gives the average number of hits (m), assuming that fragments are uniformly distributed
over the intercept surface. The probability Py, of exactly nhits(n=0, 1, 2, 3, ...) isthen
estimated with the Poisson distribution function: Py = m" .-m

n n!
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This model assumes that hits are independent events and that m is small (less than
10% of thetotal number of fragments).

System configuration

Fig. 3 displaysthe vertical and horizontal views of the system configuration. The tank
outlinefitsthe LECLERC data.

The protective ammunition is located on the turret roof. The firing angle (8) may vary
from 30° to 60°. When detonating, the ammunition generates afield of fragments, the axis
of which is supposed to be perpendicular to the ammunition flight path. The angular
width (a) of the field may vary from 20° to 45°. Whatever the value of (3, the detonation
point D is located so that the interception distance at the hull level is a constant (see
Fig. 3). Thisfixed distanceisarbitrarily setto 3m.

Engagement sequences are considered at the tank turret and hull levels. The turret
level isobvioudly critical in terms of azimuth coverage while the hull level is critical as
regardsthe fragment density distribution.

Basic results

Considering o and 6 as control variables, the analysis of the system leads to the
following result: increasing the azimuth coverage requires to increase o and 6 while in-
creasing the fragment density distribution requiresto decrease o and 6.

In order toillustrate these conflicting options, consider two system configurations that
will be denoted by S 1 and S2. Both systems must provide a protection through 270°
around the tank by means of 26 ammunitions.
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Figure 3— System configuration.

909



Vulnerability Modeling & Wound Ballistics

Asregards S1, each ammunition covers a 10° azimuth sector at the turret level (Fig.
44). Asregards S2, contiguous protection sectors must overlap: therefore each ammuni-
tion coversa20° azimuth sector (Fig. 4b).

Given these congtraints, the search for the optimal solution for each configuration
yieldsthefollowing data:

Horizontal cross section of the protection areas at theturret level

Figure 4a— S1: no overlapping. Figure4b—S2: full overlapping.
S1 S2
Control variables o =20°0=40° a=30° 0=60°
Ammunition flight distance 29m 1.1m
Turret level 2.6m 2.1m
F ts flight dist
ragments thght cistance Hull level 4.8 m 5.5m
. Turret level 10 6
Number of hits Hull level 2 ]
Turret level 90% 90%
i P
Effectivencss (Px) Hull lovel 85% 50%

Fig. 5aand 5b display the number of hitsat theturret level asafunction of the azimuth
angle of the incoming target. One can observe that the requirements concerning the azi-
muth coverage are satisfied. As regards S2 (Fig. 5b), the angular sector protected by the
mid-ammunition (Ag) isalso protected by the contiguous ammunitions (A1 and A_1).

12

10

Number of hits

By

-15 -10 -5 0 5 10 15 -15 -10 -5 0 5 10

15
Azimuth angle (°) Azimuth angle (°)
Figure 5a—Azimuth coverage (S1) . Figure 5b —Azimuth coverage (S2).
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In conclusion, on one hand, S1 provides a very good level of protection around the
tank, from the turret level to the hull level. However, it cannot protect the same azimuth
sector twice. On the other hand, S2 provides a “double” protection of each sector, but it
failsto protect the tank hull.

Optimization

The goa of the optimization process
consists in changing some parameters of

S2 in order to increase the protection per- Z
formanceat the hull level.

Changing the number of fragments
contained in the protective ammunition X Y

would be an unrealistic solution. As a mat-

ter of fact, the ammunition should contain

1000 fragmentsto increase Pk up to 80% at / A}
the hull level. Decreasing the interception L~
distance at the hull level (Fig. 3) hasonly a Figure 6 —Rectangular ammunition.
second-order effect on Pk .

The solution consists in changing the shape of the protective ammunition. Consider a
rectangular ammunition, the area of which is equivalent to the circular 150 mm-caliber
ammunition. The field of fragmentsis represented by a four-sided pyramid. The angular
width of the field is defined by two angles, a and 3 (Fig. 6). This modification introduces
anew control variable ().

Thus, anew solution can be computed, which gives the following results: interception
distance at hull level =2 m, ammo length= 175 mm, ammo width = 100 mm, 6 = 45°,
a =20° B =35° - the “double-protection” criteria is satisfied, Pk (turret) = 90% and
Pk (hull) =75%.

Influence of the position errors

Last but not least, ATHENA provides the capability to examine the influence of the er-
rors related to the position of the target and the protective ammunition. Given the pre-
vious dataand assuming that the errors are normally distributed, the limits of the standard
deviations (0max) can be computed so that Pk > 80% at theturret level:

— 1-D ammunition position error (along the flight path): omax =20 cm,
— 3-Dtarget position error: 0max = 10 cm.
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