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INTRODUCTION

The introduction of composite materials in ballistic helmet design has lead to an im-
provement in ballistic resistance and a reduction in weight compared to the traditional
steel helmets. However, a major drawback of composite helmets is that they can deform
substantially under ballistic impact. These deformations can be so severe that the helmet
interior impacts the head, which can result in serious head injury even when complete hel-
met perforation is prevented. Therefore, to further enhance the ballistic protection offered
by composite helmets, the effects of the deformation of the helmet interior need to be bet-
ter understood so that it can be accounted for in helmet design and performance criteria.

The complex response of composite materials together with the high costs and limited
reproducibility of ballistic impact tests renders a completely experimental characterisa-
tion of the helmet deformation expensive and time consuming. Numerical modelling can
provide a partial solution to this problem, since it allows a relatively fast and inexpensive
means of gaining insight into the parameters governing the response of composite hel-
mets to ballistic impact. A numerical model capable of predicting the ballistic impact re-
sponse of laminated composites has been presented previously [1]. The accuracy and li-
mitations of the numerical model were evaluated by simulating ballistic impact tests on

The ballistic impact response of composite helmets was evaluated numerically,
using a previously presented numerical composite damage model. The simula-
tions revealed that the helmet interior exhibited higher deformations than pre-
viously observed in flat panels fabricated from the same material. It was also
found that the impact effects were localised and that the global motion of the
helmet was negligible. In addition, ballistic impacts on the helmeted head were
analysed, using the helmet model developed as part of this study and a state-of-
the-art head model. These simulations showed that the helmet deformation can
exceed the stand-off, resulting in an impact of the helmet interior with the skull.
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flat panels fabricated from the same material as ballistic helmets. In the current paper, the
ballistic impact response of a flat panel is compared with that of the actual helmet. Fur-
ther, a numerical analysis of the ballistic impact response of the helmeted head is pre-
sented.

MODEL DESCRIPTION 

Damage Model

Penetration failure, fibre breakage, matrix cracking, and delamination are generally
considered to be the principal damage mechanisms in ballistically impacted laminated
composites [2–5]. A numerical model was developed as part of this research to predict the
onset and growth of these damage modes during ballistic impact of laminated helmets [1].
The model was based on Continuum Damage Mechanics (CDM) theory [6] and imple-
mented within the explicit three-dimensional finite element code LS-DYNA.

A distinction was made between the prediction of intralaminar (in-plane tensile and
penetration failure) and interlaminar failure (delamination). The intralaminar failure mo-
des were modelled within the element constitutive routines, implemented in a so-called
user-defined material subroutine. The interlaminar failure mode was treated using dis-
crete interfaces, allowing inter-ply cracking. For a more extensive description of the da-
mage model, the reader is referred to [7].

Mesh Characteristics

Finite element models of the projectile, target panel, and the helmet were built using I-
DEAS Masters Series, Version 6. All components of these models were discretised using
8-node brick elements with single point integration.

Projectile Mesh
The analyses presented in this paper focus on impacts by 1.1 g, 22 calibre chisel nose

Fragment Simulating Projectiles (FSPs), which are commonly usod to assess the ballistic
protection provided by body armour (MIL-P46593). The FSP dimensions and mesh are
given in Figure 1.

a) Dimensions [mm] b) Mesh 
Figure 1: FSP dimensions and mesh.
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Panel Mesh
In a previous study [1], the accuracy and limitations of the composite damage model

were evaluated with ballistic experiments on woven fabric Kevlar-29/phenolic laminated
panels with planar dimensions of 101.6 x 152.4 mm (4x6 inches) and a thickness of 
9.5 mm. Similar to the physical panels, the panel model consisted of 19 plies, each 0.5 mm
thick, resulting in a total thickness of 9.5 mm. Each ply in the panel model was 2 elements
thick and adjacent ply meshes were connected by a discrete delamination interface to
model the initiation and growth of impact induced delaminations. The computation time was
reduced by modelling only one quarter of the problem utilising symmetry. A gradient in
mesh density was applied with sufficient detail in the impacted area and larger elements
elsewhere, thereby providing accurate results at reasonable computational costs. The
panel mesh is presented in Figure 2.

Figure 2: Finite element model of the woven Kevlar-29 laminated panel. 

Helmet Mesh
The geometry of a PASGT helmet was characterised experimentally, reconstructed in

I-DEAS, and discretised with brick elements. To limit the total number of elements in the
helmet mesh, only part of the mesh was allowed to delaminate during the simulated im-
pact. To avoid artificial boundary effects on the delamination growth in the simulations
the size of the area for which delamination was enabled was chosen to be larger than the
delaminated area measured in impact tests on Kevlar helmets [8] and flat panels [1]. The
discretisation in the delamination zone was based on that of the panel to avoid mesh ef-
fects in the comparison between the helmet and panel response. Similar to the panel mo-
del, the delamination area in the helmet mesh consisted of 19 layers and each layer contai-
ned 2 elements over its thickness. Delamination was enabled by inserting a discrete
delamination interface between adjacent layers. The mesh density was gradually de-
creased outside the delamination area to 20 and 10 elements over the helmet thickness.
The parts with different mesh densities were connected by tied interfaces. Figure 3 shows
the helmet mesh developed to simulate frontal impacts, together with a close-up view of
the refined mesh in the impacted area.
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Figure 3: Helmet mesh for frontal impacts.

Constitutive Models

The FSPs were fabricated from 4340 steel and heat treated to 29 HRc. The 1.1 g FSP
was modelled as an elastic-plastic material with isotropic hardening (Table 1).

Table 1: Material properties adopted for 1.1 g FSP. 

E: Young’s modulus v: Poisson’s ratio Sy: yield strength H: hardening modulus ρ: density

The panels and ballistic helmets considered in this study were fabricated from woven
Kevlar-29 fabric laminae embedded in a phenolic resin (MIL-C-44050, MIL-H-44099A).
Material properties were obtained from data found in literature, which were modified to
obtain closer agreement with experimental data trom ballistic impact tests [1] (Table 2).

Table 2: Elastic and strength properties adopted for woven Kevlar in helmet model.

E: Young’ s modulus G: shear modulus v: Poisson’s ratio ρ: density
S: strength values 1–3: principal material directions n,s: interlaminar normal & shear di-
rections 
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RESULTS 

Panel vs. Helmet

The simulations with the helmet model were compared to previously performed simu-
lations with flat panels [1] to check the effects of the helmet curvature on the deformation
response. The deformed mesh plots obtained from impacts with a 1.1 g FSP at 586 m/s are
presented in Figure 4. The deformed meshes were obtained at the time of maximum
backplane deformation, where the term backplane refers to the side of the laminate oppo-
site to the impact site. The figure shows a similar trend in both the panel and helmet simu-
lations, including the formation of a crater and the delamination of the composite due to
the advancing projectile.

Figure 4: Deformed mesh plots of panel and helmet at time of maximum backplane defor-
mation.

Figure 5 shows that the projectile velocity and backplane displacement for the helmet
and flat panel simulations are similar until the point of maximum panel backplane dis-
placement. At this point, the projectile is pushed back upwards by the panel backplane,
whereas in case of the helmet the projectile continues to deform the backplane. Figure 5
also contains experimental data from IMAX and VISAR measurements obtained during a
ballistic impact test on a panel under the same impact conditions. These measurements
provide an indication of the accuracy of the simulations. A more thorough evaluation of
the accuracy of the panel simulations is presented in [1]. Unfortunately, similar measure-
ments on helmets are currently not available.
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Figure 5: Comparison between simulations of Kevlar flat panel and helmet impacted by
1.1 g FSP at 586 m/s.

The rigid body motion of the helmet is presented in Figure 6. The helmet model was
not supported and, therefore, free to move under the impact. The figure shows that the
global helmet motion is negligible compared to the backplane, indicating that the effects
of the impact are confined in the impacted area.

Figure 6: Rigid body motion of helmet outside delamination area.
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Helmeted Head

Simulations of the helmeted head were also performed. Since the helmet simulations
revealed that the impact effects were confined to the impacted area, only the delaminating
part of the helmet was included in these simulations to save computation time. A state-of-
the-art finite element model of the skull made available by the French Délégation Géné-
rale pour l’Armement (DGA) was used to represent the head. The average stand-off be-
tween the actual helmet and the head is about 12–15 mm. However, due to the curved
shape of the helmet, the stand-off is larger at the front. For the study presented in this pa-
per, the stand-off between the delaminating helmet area and the skull was about 20 mm to
accommodate this larger stand-off at the front. The resulting model is shown in Figure 7.

Figure 7: DGA head model with delaminating part of helmet.

Figure 8 presents the results of the simulations with the helmeted head, showing that
the helmet backplane exceeded the 20 mm stand-off and impacted the head. The contact
pressures in the skull resulting from the impact with the backplane are also presented,
with a maximum contact pressure in the order of 20 MPa.

Figure 8: Impact of delaminating helmet backplane on skull (FSP impact velocity = 
586 m/s).
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DISCUSSION AND CONCLUSIONS

The ballistic impact response of laminated helmets was evaluated numerically in this
study. The results indicated that the predicted backplane deformation was greater for the
helmet than for flat panels fabricated from the same material. The helmet simulations also
indicated that the impact event is very localised and its effects are restricted to the impac-
ted area. The global motion of the helmet is negligible compared to that of the backplane.
Simulations of ballistic impacts to the helmeted head showed that the backplane deforma-
tion exceeded the stand-off, resulting in an impact between the helmet interior and the
skull.

The numerical findings presented in this paper need to be verified experimentally. As
was previously done for the flat panels, the accuracy of the helmet simulations should be
evaluated with ballistic impact tests performed on actual helmets. In addition, experi-
ments should be performed to verify the skull contact pressures found in the helmeted
head simulations, using either an anthropomorphic test device (Hybrid-III dummy) or
post-mortem subjects.
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