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In this paper we present data on shaped charge warheads containing low melt
energy metal liners. The metals chosen for the study included, silver, titanium,
and zirconium, depleted uranium (DU) and of course copper. We observed that
zirconium had the highest cumulative jet length followed by silver, titanium,
DU and finally copper. We a so observed that zirconium had the longest break-
up timefollowed by silver, DU, titanium and finally copper. DU had the lowest
plastic particle velocity followed by silver, zirconium, copper and then tita-
nium, the latter being similar to copper. The highest and most desirable mate-
rial ductility factor of the metal s tested was achieved by zirconium followed by
silver, titanium and then DU. Compared with copper, al the metals tested had
longer break-up times, better (lower) plastic particle velocities (with the excep-
tion of titanium) and better (higher) material ductility factors.

INTRODUCTION

Itiswell known that traditional metallic shaped charge jets break up into discrete par-
ticles after afew charge diameters of motion and that the inherent off-axis velocity com-
ponents of these particles causes a significant decrease in penetration performance the
greater the distance travelled. Copper isthe traditional shaped charge liner material but it
has long been recognised that other metals, and perhaps other materials, having lower
melt energies may well have increased long stand-off potential because of the enhanced
thermal softening that will occur. Thermal softening of the jet material leads to increased
material ductility and hence agreater cumulative jet length and an assumed greater pene-
tration performance. Examples of metals with low melt energies include titanium, zirco-
nium, silver and depleted uranium (DU) and al these were included in the study. In view
of the different densities of the metals studied, constant mass liners were used so that the
cumulative mass-velocity plots would be similar, if not the same. The aim of the work
was to identify if any commercially pure metal liners could provide improved jet break-
up timesand improved jet material ductility when compared with copper.
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MATERIAL MODELS

Several material models have been developed for metallic materials [1-4]. Most of
these material algorithms are based on semi-empirical fitsto material test data and have a
basis in dislocation mechanics. In general these models express the deviatoric flow stress
(o) asafunction of strain (€), strain rate (€), temperature (T) and grain size (d), i.e.

o= f(e&T,d) (1)

The exact functional form of this relationship depends on the model chosen and many
functional formsexist.

A highly regarded model amongst the shaped charge community is the Zerilli-Arm-
strong model [5-7]. This material model has different functional formsfor different crys-
tal structures and it also has been extended to allow for other effects such as phonon drag
and the variation of the shear modulus with temperature. For face centred cubic metals:

o=Ce"exp[-C,T+CTIng]+C, +Cyd @)
for body centered cubic and hexagonal close packed metals:
o= Cexp[-C,T+CTIné]+Cy +Cd ™ +Cye” 3)

The Zerilli-Armstrong data for a range of metals available in the open literature is
shownin Table 1 for the general form

o =Cy€"exp[-C, T + C3 Tn(de/dt)] + C4+ Csd™ + Cge™

Other forms of the material algorithm have been developed to alow for path depen-
dency [8], and they can also be used in the analysis of jet break-up. The material algo-
rithmsfor titanium and zirconium have been published [9]. It was apparent from the mag-
nitude of their constants, in particular the strain hardening constant, and by preliminary
analysis that jets derived from these metals had potential to provide improved perform-
ance at increased moderate stand-off distances when compared with copper.

Table 1. Zerilli-Armstrong material algorithm constants

Metal C, C, Cs Cs Cs Cs n m

ISMPa) (K™Y K™ (MPa) (MPa mm (MPa)

Cu 890 0.0028 0.000115 46.5 5 0 0.5 0

Ta 1125 0.00535 0.000327 0 19 310 0 0.44
1750 0.00975 0.000675 0 19 650 0 0.650

W 16500 0.591 0.000279 0 25.6 860 0 0.443
249500 0.666 0.000307 20 25.6 860 0 0.443
41000 0.061 0.000307 20 25.6 860 0 0.443

Mo 937 0.0036 0.000107 i) 22.65 647 0 0.401

Zr 600 0.0024 0.000132 21 7.9 76 0 0.51

Ti 1100 0.00226 0.00017 54 14.86 300 0 0.5

Fe 1033 0.00698 0.000415 0 22.0 266 0 0.289
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The relevance of material models to this study isthat the jet break-up and elongation
process is directly related to the flow stress, 0. Knowing how this parameter varies as
function of strain, strain rate, temperature, and grain size is therefore essential for the ac-
corate prediction of jet break-up characteristics using analytical modelling or hydrocodes.

Several important conceptswill now be defined in relation to the use of these material
models. The plastic wave velocity isthe velocity at which plastic stresswaves may propa
gate through metal s and may be defined by:

%
1 do
=] — 4
G (p(, ds] @

The plastic particle velocity AV p isthe maximum particle velocity difference which
can be observed in astretching jet which undergoes particul ation and is given by:

AV = [V, de (5)

where gy isthe strain at necking corresponding to the value derived from the tensileinsta-
bility condition, which is determined by the form of the material agorithm according to
Goldthorpe[10].

Another important parameter is the concept of plastic work. This is the amount of
energy which the material acquires dueto plastic deformation and is given by:

E= _['o‘da (6)

Since the processes occurring in shaped charges are essentially adiabatic, i.e. thereis
insufficient time for energy losses to occur by heat transfer, large temperature rises may
occur dueto severe plastic work. Hence:

T-T, = (7

£
CP
JET BREAK-UP

A number of analytical jet break-up models have been proposed and reviewed [11].
They are al essentially similar and allow for strain rate effects as well as incorporating a
plastic particle velocity term. A model devel oped within DERA [12,13] gives an analyti-
cal expression for the break-up time:

T, 1

fy=—2 —— 8
’ AV, & ®)

Herergand gp arethe radius of thejet and strain rate at the point of jet formation.

It can be observed that the break-up time and hence the cumulative jet lengthisanin-
versefunction of AVpy .
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Therelevance of thisto the present study isthat the break-up timeis affected by chan-
ges in the plastic particle velocity which arise from modifications in the temperature,
grain size and strain rate effects. These in turn are related to the charge design, the liner
material and the liner material processing routes. A deeper understanding of the jet break-
up process will allow the shaped charge designer to bein a better position to design char-
gesfor long stand-off applications.

Metals with low melt energies

The melt energy of aparticular material may be defined asthe total energy required to
take amateria from absolute zero, through any phase changes to its melting point and to
produce melting. In mathematical termsthe melt energy may be expressed by:

sH,= [ Cdr+3 L, + L, ©)
i=l

where L; isthe latent heat of phase change (there may be more than one) and L isthela-
tent heat of fusion.

For solid state transitions, that is from one crystal type to another, the specific heat
may change value in adramatic way and hence additional expressions are required:

AH = ["C,dT + 3L 4L, +[ C,mar+ zl Ly + Ly +

i=] i
(10)
‘2 H oy N n
[ C,@dr+3 Ly + Ly + f) C, T+ Ly + Ly
i=l i=1
Thermal properties of materials are amatter of record.
It isalsoimportant that the specific heat isgenerally afunction of temperature:
C,=a+bT+cT* (12)

and may be represented by an appropriate polynomial. The specific heat is also a more
complex function of hydrodynamic pressure and thisfact needsto be allowed for if we are
to have a very accurate description of the material behavior in a hydrocode simulation.
Candidate materials that appear attractive in terms of melt energies are titanium, zirco-
nium, silver, gold and uranium. Table 2 shows the melt energies for a range of candidate
shaped charge liner materials. It can be seen that there are several liner materialsthat have
melt energy values considerably lower than that of copper. The value of the strain harde-
ning constant and exponent in the material algorithm are also related, to the total melt
energy [14 and 15].
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Table2. Melt energiesfor various metals

Metal AH, (kI kg™) A H,, (Jm™) A H,, (kJ mol™)
Cu 727.137 6515x 10° 46.209
DU 215.503 4.105 x 10° 51.289
W 681.866 1.316 x 10%° 125.361
Ta 631.688 1.0486 x 10" 114.304
Mo 1015.440 1.0378 x 10" 97.421
Al 1228.240 3.316x 10° 33.138
Fe 1074.841 8.462 x 10° 60.029
Au 237.450 45828 x 10° 46.771
Ag 395.719 4.155x 10° 42.686
Zr 808.181 5.245x 10° 73.722
Ti 1376.064 6.1923 x 10° 65.913
Pb 118.711 1.3474 x 10° 14.453
Zn 376.768 27115 x 10° 24.829
Pt 373.012 7.982x 10° 72771

MATERIAL DUCTILITY

A concept of material ductility applied by Baker [16] has been used in order to quan-
tify the quality of various jets produced from the chosen design. This concept is based on
the analysis of the break-up of jets by the use of instability equations and can be readily
derived from equations published by Chou [17]. The resultant formula describes a rela-
tion between break-up time and materia ductility factor Q.

t b inay = Q(dm/dV.1/m)"? (12)

This equation can be used to analyse arange of jets provided that the full jet kinema-
tics are known. The larger the value of Q, then the more dynamically ductile the material
being studied. It is important to note that different warhead designs will have different
sets of Q vaues. In other words, any designs of warhead which give rise to substantially
different mass-velocity profileswill have different Q values.

FIRING TRIALS AND ANALYSIS OF JET CHARACTERISTICS

The warhead design used for the metal liners was based on a constant mass depl eted
uranium hemispherical design, initiated by means of a plane wave generator and loaded
with LX 14 explosive. One principle advantage of this hemispherical designisthat it can
produce inherently straight jets that contain about 80% of the liner mass. The magnitudes
of the jet lateral velocity vectorsfor these types of design, witch can be aslow as 20 ms-1
are significantly lower than those produced by conventional conical liner shapes, typi-
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cally 80 ms-1. The use of constant mass designs implied that the cumulative mass-velo-
city plots should be similar for al of the materials another feature that makes a compari-
son between the different materials easier. The lower density materials will also produce
fatter jets at earlier timesand for similar values of AV p , the break-up times will be lon-
ger as shown by equation 8.

Firings were carried out at stand-off distancesin the range 40 to 100 CD and residual
jet penetration measured into rolled homogeneous armour. Flash radiography was used to
capture the jets at 2 X-ray timesin the region of 2000 microseconds and about 50 micro-
seconds apart. The jet kinematics were quantified by the analysis of the X-ray data using
the DERA jet regression routine JETREG, which isincorporated in the DERA analytical
suite of programmesknown as JET [18].

The extended jet characteristics are presented in Table 3. It should be pointed out that
the masses of the jets as cal culated using JETREG, were based on the assumption that the
jet particleswere ellipsoids.

Table 3. Extended jet characteristics

Metal No. Jet length Vtip Vtail Break- Plastic particle Material
particles (mm) (kms™) (kms™) up time velocity (ms™) ductility
th  final factor (Q)
(ns)
Ag 55 1456.0 6.48 3.01 419.6 64.26 1819
Ag 62 1563.5 6.66 2.99 426.0 60.16 23322
Zr 54 2058.9 6.75 3.34 603.8 64.34 246.1
Zr 48 2049.4 6.7 3.18 582.2 74.9 217.0
Ti 33 1327.4 6.34 299 3962 104.69 175.7
Ti 33 12299 6.46 2.58 317.0 121.25 135.1
DU 84 1700.0 6.4 33 548.4 3735 217.67
DU 87 1686.4 6.61 3.59 558.4 35.12 226.60
Cu 38 1130.5 5.90 2.56 3385 90.25 161.53

The analysis of the datafrom thefiring of the rather novel liner metals DU, silver, zir-
conium and titanium, in ahemispherical warhead design indicatesthat all of these materi-
alsare capable of producing ductilejets. From Table 3 it can be seen that the plastic parti-
cle velocity values for the silver and zirconium jets are low and this indicates that these
metal s are more ductile than copper. Thisfact isalso reflected in the values of the material
ductility parameter, Q, whichislarger than that of copper. Of some significanceisthefact
that the metal processing routefor the silver linerswas closeto being ideal in as much that
thefinal equi-axed average grain diameter wasin the order of 15 microns.
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Work carried out by one of the authors almost 20 years ago and published later, recog-
nised that isotropy and average grain diameter of ametallic linersis of considerable im-
portance [19]. The commercialy pure titanium liners used in this study had an average
grain diameter of about 120 micronsand the commercially pure zirconium had an average
grain diameter of 80 microns. These grain sizes were an order of magnitude larger than
wewould have liked however, it is neverthel ess the case that the quality of the jets produ-
ced from thelinerswas high in terms of their break-up behaviour and their material ducti-
lity. Asfar aswe are aware this-degree of material ductility has not previously been repor-
ted for metal lined shaped charges.

The results of the firings from the designs containing depleted uranium (DU) liners
are similar to those obtained from previous firings. Depleted uranium exhibits the lowest
experimentally determined plastic particle velocity value (30 ms™) for any metallic liner
material fired so far. Together with its high density (19050 kg m=3) this value of plastic
particle velocity makes DU very attractive as a shaped charge liner material from a per-
formance perspective although clearly its toxicological implications need to be consid-
ered. Whilst the cumulative length of the zirconium jet waslonger than that of DU, the f-
fective length based on the square root density law is greater for DU than for the other
metallic liner materials so far tested.

It should be noted that the highest energy available expl osive composition was used to
drive these designs because an increase in the adiabatic shock heating leadsto a higher jet
temperature leading to more ductilejetswith high cumulative jet lengths.

CONCLUSIONS

Silver, zirconium, titanium and DU when tested in aconstant liner mass hemispherical
design al produced ductile jets with longer break-up times than copper. This enhanced
material ductility is due to the intrinsic material properties of these metals and can be
quantified by the use of an appropriate material algorithm in relation to the analysis of
tensile instabilities. This implies that compared with copper, there is potential for these
materials to provide better optimum penetration performance at greater stand-off distan-
ces.
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