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Mott [1, 2] undertook one of the earliest, and probably most familiar, theoretical inves-
tigations of the dynamic fragmentation of exploding cylindrical shells. Out of this study
the two analytic expressions, in Mott’s original symbols, have emerged as commonly ac-
cepted scaling relations for fragmenting shells (e.g., Cooper [3]).

(1)
(2)

Equation (1) is a description of the statistical fragment size distribution while Equa-
tion (2) provides the fragment size scale parameter for the preceding distribution. In these
equations B and C are constants while n(M) is fragment number and M = m1/2 where m is
fragment mass. Cylinder shell thickness and inner shell radius are t and d2, respectively. It
is seldom noted that Mott himself, both directly and tacitly, refuted the above two rela-
tions in later results of the same study. Both theoretical and experimental alternatives
were offered in his later efforts which are rich in the depths to which issues governing dy-
namic fragmentation were pursued.

Here we propose an alternative set of relations for the fragmentation of explosively
expanding shells,

(3)

(4)

In a seminal study, Mott developed relations for calculating the fragmentation
characteristics of naturally fragmenting cylinders. Here, the issue of scaling is
further explored through application of the later theoretical efforts of Mott,
along with other more recent theoretical studies. Scaling predictions are com-
pared with recent fragmenting cylinder data.
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In the preceding Equation (3) N(m) and No are the cumulative and total fragment num-
ber, respectively, while µ (dimensions of mass) is the fragment size distribution scale pa-
rameter and β (the distribution shape parameter) is a constant with a value within the ap-
proximate range 1/3 ≤ β ≤ 3. In Equation (4) A is a fragment aspect ratio, s and α are
constants with s equal to either 2 or 3 depending on whether the dominant fragment size
exceeds, or does not exceed, the case thickness. A theoretical range for α is 2 ≤ α ≤ 3. R is
the nominal radius of the expanding shell and T is shell thickness; G and V are fracture re-
sistance and radial expansion velocity, respectively.

It is critical to here emphasize that Equations (3) and (4) are not counter to the theore-
tical analysis of Mott. They are, in fact, one of several representations that emerge from
the later ideas presented in Mott’s classic papers on fragmentation. More recent fragment
size theories can also be incorporated into Equations (3) and (4) [4, 5]. It is the intent of
this short paper to emphasize the theoretical rather than applications-oriented issues go-
verning dynamic fragmentation with particular focus on Mott’s theoretical work.

In pursuing a statistical description of shell fragments, Mott was influenced by muni-
tions fragment size data available to him, in addition to the then recent theoretical work of
Lineau [6] in which random fragmentation of a line led to the distribution in lengths l of
the form,

(5)

Mott reasoned from Lineau’s theory that in the fragmentation of a thin shell that the
size scale l ~ m1/2 might continue to be the random variable. Mott’s fragment distribution
law in Equation (1) follows directly from this argument. Here we pursue a more general
development based on principles of survival, or hazard, statistics [7]. Accordingly, a body
of mass M broken into N fragments of random mass m has the distribution,

(6)

where h(m)dm is the random chance of fragment rupture into the mass interval m to
m+dm. The statistical fragment size distribution is constrained by specifying the functio-
nal dependence of h(m) on the fragment mass m. This is done by either exploring additio-
nal physics specific to the fragmentation process, or by hypothesis to be tested by data
such as the earliest assumption pursued by Mott [1, 2] mentioned above.

For example, given no additional insight into the fragmentation process there is little
reason to assume a bias of h(m) toward either the large or small masses and the simplest
assumption is h(m) = ho a constant. Thus p(m) in Equation (6) becomes,

(7)

and the cumulative fragment number distribution is,
(8)

where µ = 1/ho is the distribution scale parameter. Applicability of this distribution to dy-
namic fragmentation has been suggested by Grady and Kipp [8].
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Alternately, following Mott’s assumption of and it follows
that,

(9)

resulting in the cumulative fragment number distribution initially favored by Mott,

(10)

In the present development we consider the power law functional dependence,

(11)

which, when integrated, leads to the size distribution scaling relation of the Weibull form,

(12)

This relation clearly encompasses the previous examples. Namely, β = 1/2 corre-
sponds to the distribution arrived at by Mott and Linfoot [9] while β = 1 corresponds to
that suggested by Grady and Kipp [8]. Generality of the parameter β for a munitions-spe-
cific scaling equation is warranted for a number of reasons. Mott and Linfoot [9] argued
that, when the fragment distribution was dominated by fragments of a size less than the
case thickness, β = 1/3 was probably more appropriate. For a specific munitions system, a
range of expansion strain rates will lead to statistical heterogeneity (a different size para-
meter at different positions along the munition case). This breakup feature will broaden
the distribution leading to smaller effective values of β. On the other hand, a degree of
case scoring, or other system processing, with the intention of biasing the distribution to-
ward a unique size, has the effect of increasing the distribution shape parameter β. (Note
that as β approaches infinity Equation (12) approaches a Heaviside function.) Additio-
nally, Mott’s later fragmentation theory suggests higher values for β.

To determine the mass scale parameter in the second scaling relation (Equation (2))
Mott joined two elemental theories. First a characteristic fragment size was determined
by equating the work required to open a single fracture with the stretching kinetic energy
on both sides of the fracture point. Expansion velocity of the shell introduced through the
kinetic energy expression was then solved for through an explosive energy-expansion ki-
netic energy balance not unlike the methods developed by Gurney [10].

The present Equation (4) is derived similarly except specific models for the fragmen-
tation resistance, G and the expansion velocity V are not explicitly introduced. Effective
velocities can be calculated from hydrocode simulations as well as with Gurney methods.
Fragmentation resistance may be estimated through physics-based theories such as Cur-
ran et al. [11], Kipp and Grady [5] or through the later statistical theory of Mott [1, 2].

This later theoretical approach of Mott pursued in the last of the 1943 reports intro-
duced new physics including a markedly stronger physics-based approach to the statistical
processes. Recognizing that fracture in an expanding cylindrical shell occurred initially
as longitudinal cracks after becoming plastic under circumferential tension, he idealized
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the problem to that of a ring of metal at radius R expanding at a velocity V and stretching
plastically at a tensile flow stress Y. As plastic strain increases within the expanding body
a probabilistic relation is proposed which expresses the chance of fracture at random posi-
tions on the rings. Upon fracture at a point, waves propagate away relieving the tensile
stress and precluding further fracture in regions encompassed by the waves. This solution
assuming ideal plasticity ahead of the wave and rigid behavior behind showed that the
Mott wave reached a distance, from the point of fracture at a time t after
fracture. Later elastic-plastic wave solutions of Lee [12] verified that Mott’s approximate
solution was, indeed, very good.

With the solution in hand for establishing that rate at which stress is relieved in the
neighborhood of fractures Mott proceeded to pursue specific analytic forms for the dyna-
mic random fracture process. Here we have carried through Mott’s analysis assuming that
the chance of fracture occurrence per unit length and unit strain interval is given by the
power-law function,

(13)

The probabilistic fracture relation (Equation (13)) can be combined with the stress
release expression to establish the number of fractures which occur in an expanding cylin-
drical or ring-shaped body at a characteristic expansion strain rate ε· = V / R. The analysis
is too extensive to detail here, but essential concepts have been reported in Grady [13].
We find for the number of fractures per unit length,

(14)

The coefficient αn is a slowly increasing function of n with α1 ≅ 0.6 while α25 ≅ 2.0.
Note the physical properties in Equation (14) governing the characteristic fragment size.
The parameter σ is a measure of the strain to failure while n determines the standard devi-
ation about this strain. Similar results were obtained by Mott.

Mott then proceeded to determine the distribution in fracture spacings (fragment
lengths) using the same statistical fracture theory. This procedure is best detailed in his
open literature publication of his earlier work [14]. Mott chose to demonstrate the charac-
ter of the resulting size distribution through a direct hand analysis. A comparable analytic
solution for the distribution has been found for the special case of a uniform fracture pro-
bability function, n = 1 above [12]. It is also readily shown that the cumulative number di-
stribution in fragment lengths is analytically represented by,

(15)

based on a hazard statistics description of the fracture physics which contrasts markedly
with the Lineau distribution in Equation (5). Mott’s assumptions of l ~ m1/3 or 
l ~ m1/2 for case fragmentation would then lead to β of 1 or 3/2 in Equation (12), demon-
strating the increased value of β resulting from Mott’s later statistical fragmentation the-
ory.
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Recent explosive fragmentation experiments on heat-treated and as-received AerMet
100 steel have been performed. Details are addressed elsewhere in the present proceed-
ings. Here we examine fragmentation and scaling within the scope of the theoretical 
work of Mott as well as a more recent energy-based fragmentation theory [11]. Experi-
ments examined here were performed on right circular cylindrical shells with length
equal to inner diameter. Replica scaling of the test geometry was investigated. Individual
tests are here identified as full scale (FS), length ≅ 20 cm, or half scale (HS), length ≅
10 cm. Wall thickness to inner radius ratio was T/R = 0.08.

Cumulative fragment number distributions for the half-scale and full-scale heat-trea-
ted tests are shown in Figure 1. Distribution parameters from a best fit of Equation (3) to
the fragmentation data for both heat-treated (ht) and as-received (ar) steel are provided in
Table 1. The number parameter is not independent but is determined from the total reco-
vered mass of fragments M through  No = M / µΓ ((1 + β) / β) where Γ( ) is the gamma
function. 

Figure 1. Fragment distributions for heat-treated AerMet® 100 fragmentation test.

Table 1. Fragment distribution parameters

Scale parameter µ for the four experiments normalized by ρT3 (0.52 g (HS), 4.4 g
(FS)) is plotted in Figure 2. Tests on heat-treated steel are clearly consistent with replica
scaling as is evident by the constant value of the normalized scale parameter. Distribu-
tions for tests on as-received steel do not as tightly constrain µ as in the heat-treated case,
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but values here are not inconsistent with replica scaling. Observations on scaling have im-
plications on the several theories predicting the fragmentation resistance G in Equation 4.

The energy-based theory [5] based on a fracture
toughness Kc fragmentation resistance predicts,

(16)

with exponent α = 3 in Equation (4). Mott’s statistics-
based theory, on the other hand, yields, with exponent
α = 2,

(17)

Calculations of the scale parameter µ from Equa-
tion (4) based on either the Kc energy expression
(Equation (16) or the Mott statistical expression (Equa-
tion (17)) are compared with experiment in Figure 2.

While AerMet 100 material properties are not fully quantified, precise values are not
critical to the present observations, and the very reasonable values used are included in
Table 1. No attempt has been made to account for the obvious difference in strength pro-
perties of heat-treated and as-received steels. An expansion velocity V = 2000 m/s and an
aspect ratio of A = 1.5 assumed in Equation (4) are consistent with measured velocities
and inspection of recovered fragments.

Looking at the results shown in Figure 2, we can see that fracture resistances determi-
ned from Mott’s statistical theory and the energy-based theory of Kipp and Grady provide
equally reasonable quantitative predictions of the experimental fragment size scale µ. The
Mott theory is consistent with the observed replica scaling, however, whereas the fracture
toughness based theory is not. It is well known (e.g., Lawn and Wilshaw [15]) that for
ductile fracture in metals, yield stress and fracture toughness can be related through a pro-
cess zone length scale. When this length scale approaches characteristic specimen dimen-
sions (shell case thickness for example) size effects can be observed. Present replica sca-
ling results for fragment size suggest that the effective toughness must depend on case
thickness. Considering realities of the complex fracture mechanisms in expanding cylin-
der fragmentation including cooperative interaction of adiabatic shear banding along with
shear and tensile fracture such dependence should probably not be surprising.
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