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The particulation of a shaped-charge jet is modeled as the axisymmetric dy-
namic necking instability of aviscoplastic metallic material. Analytical / nume-
rical predictions are obtained from alinear perturbation analysisfor the jet break-
up time, the fragments velocity and aspect ratio. Comparisons are attempted
with experimental data obtained from flash radiographs of copper jets. Rugo-
sity measurements carried out on intact recovered fragments provide realistic
estimatesfor the geometrical imperfections of thejets. Despite the simplicity of
the model, a good agreement between theoretical and experimental datais ob-
tained when using typical values of the strength and strain rate sensitivity of
copper at high strain rates.

INTRODUCTION

High speed metallic jets produced by shaped-charge devices experience very large
amounts of stretching during their flight. However their length islimited by particul ation,
a process detrimental to their perforating capabilities. The physical origin of this pheno-
menon has been investigated for more than 50 years[1-7]. It isnow generally agreed that
particulation pertains to necking instabilities. Hydrocode simulations of this necking pro-
cess are commonly used to provide predictions that could be compared to experimental
observations. In particular, such calculations have lead to estimates of the yield strength
of the material in jet conditions [8]. Simpler analytical models are still needed. By select-
ing the essentia features, they provide a basic understanding of the phenomenon. Trends
and limits can be displayed when material and geometrical parameters are varied, and
guantitative estimates may also be obtained, at negligible expense. In the present paper, a
model accounting for the features of the dynamic necking processin a viscoplastic mate-
rial is used to predict the influence of various material and experimental parameters, as
well asto provide reasonably accurate quantitative results.
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MODEL FORMULATION

This section provides abrief outline of the model used in the present work. For amore
detailed account, the reader is referred to ref. [9]. Initial conditions to the model jet are
such that the axial velocity distribution islinear along itsextent L. Vel ocity boundary con-
ditionsareimposed at the ends of the jet: the velocity V of thejet tip relative to itsrear end
is supposed constant. In addition, stress-free lateral edges and axial symmetry are assu-
med. In the extreme jet strain rate conditions, the material behavior is taken to be visco-
plastic. Strain hardening, anisotropy and thermal coupling are neglected. If D isthe strain
rate tensor, sthe Cauchy stress tensor deviator, o the equivalent von Mises stress and De
theequivalent strain rate, the constitutive relations are

s=AD, /\:307e
3D

e
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m denotes the material strain rate sensitivity. At the large strain rates encountered in
the jets, mranges from 0.01 below 103 s1t0 0.2 at 2.104 s'1. From the experimental data
reported in [10], a reasonable value amounts to 0.05 at 104 s'1. Taken as a constant, this
valueisused intherest of the paper. The Lagrangian momentum equations are

pg\t/ =divn 2

where n isthe Boussinesq (non symmetric) stresstensor. F being the deformation gra-
dient, the Boussinesq and Cauchy stresstensors (n, o) arerelated through

n=JoF", J=deF =1 (3

Incompressibility being assumed, Jisequal to unity.

A uniform stretching of the jet is solution to egs. (1-3) under the prescribed initial and
boundary conditions. One prominent feature of that solution isradial unsteadiness:. the ra-
dia velocity of particles decreases as they approach the jet centerline. As aresult the ma-
terial is subjected to an inertial radial pressure. Under the high strain rate conditions per-
taining to shaped-charge jets, this pressure can be larger than the reference (flow) stress of
the material o* (i.e. istheinitia uniform tension stress). Such conditions are character-
ized by a Reynolds number Ry = pV2 / o* larger than 1. Following [8], the estimate
o* = 0.1 GPawill be used hereafter.

To investigate the instability of that uniform stretching solution, linear non uniform
perturbations are superimposed. First order perturbation termsareretained inegs. (1, 2, 3)
and in boundary conditions. The perturbations are given in Fourier modes in the Lagran-
gian initial configuration. Further on they stretch with the material. The attention is fo-
cused on the Eulerian radiusr of the jet cross-sections. If rg denotesits uniform value (as
given by the uniform stretching solution), the amplificationa= (rg—r) / ro isameasure
of the jet non-uniformity. Sinceit isrelativeto ro, thismeasureis more significant of non-
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uniformity than the absolute measure (rg —r) when deformations become large. Consider
in addition therelative rate of growth G of across-section

G=ma/a (3

Gisnormalizedin the sensethat itsvalueis G=1in a 1D quasi-static long wavelength
reduction of the model. Clearly, non uniformity increases when G>0. In our model, G is
obtained in closed form as a function of time and experimental parameters, provided that
the rate of growth of the disturbancesis much larger than the characteristic strain rate V/L
of the uniform stretching. In quasi-static conditions, this result reduces to those of refs.
[12, 13] and in dynamic long wave length conditions to the results of [11]. Clearly, the
amplification afollowsfrom theintegration of relation (3) intime

T=t
a(t) = a(0) exp(~ / G(r)dr) @
m =0

a(0) isameasure of theinitial imperfectionsin the jet uniformity. In thiswork, a(0) is
estimated from measurements carried out on intact recovered fragments. The breakup
time can be defined as the time ty, when at least one cross-section satisfies a(tp) = 1. It
should be clear that this breakup criterion is merely alinear extrapolation. Non linear fai-
lure mechanisms such as shear banding, which may occur at jet breakup [4], are not ac-
counted for. Therefore the result obtained from this criterion is an overestimate of the ac-
tual breakup time. Nevertheless, since linear and nonlinear mechanisms are both
destabilizing, it islikely to be reasonably close to the latter, particularly so when the per-
turbation growth rateislarge.

MODEL RESULTS

Therate of growth G of the non uniformity, as given by eq. (3), is plotted at theinitial
timein Fig. 1 versus the perturbation wave number for various Reynolds numbers. G is
always positive, meaning that the uniform stretching of the jet is unstable at all perturba-
tion wave numbers. G is also less than 1. Thus inertia delays the growth of the non uni-
form disturbances. At long wave lengths (short wave numbers) the rate of growth G mer-
ges with the 1D dynamic approximation [11], and at short wave lengths with the
quasi-static approximation [13]. Therefore inertia stabilizes significantly the uniform
stretching with respect to long wave length perturbations only. As aresult awave humber
ke of maximum perturbation growth is selected. After integration in time, the associated
amplification providesinformation on the characteristic fragment length.
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Figure 1: Dispersion curvesat initial time; influence of inertia(m=0.05).

Fig. 1 aso shows that the larger the Reynolds number Ry, the shorter the wavelength
of maximum growth. Consequently more inertia leads to shorter fragments at the out-
come of the process. The influence of rate sensitivity on the rate of growth G isplotted in
Fig. 2. It is seen that increasing the rate sensitivity leadsto smaller critical wave numbers.

Asaconsequence, fragmentswill be larger at the end of the processin more rate sensitive
materials.

Normalized rate of growth G

Wavenumber pk

Figure 2: Influence of rate sensitivity oninitial dispersion curve (Reynolds number Rg=4.).

The evolution in time of the dispersion curve shown in Fig. 1 for the Reynolds num-
ber Ry=4 isplotted in Fig. 3. It is seen that short wave length perturbations grow morera-
pidly than believed on the basis of theinitial values, whereasthe damping effects of radial
inertia on long wave lengths are more and more effective. The figure also shows that the
critical wave number k. is shifted to larger values astime goes on, which reflects the shar-
pening of necking. Theimplication isthat initially dominant modes may not be those who
finally shape the jet non uniformity. As shown by performing theintegration (4), the latter
are actually those leading to the shortest breakup time.
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Figure 3: Time evolution of dynamic dispersion curve of Fig. 1 (Reynolds number Ry=4,
m=0.05, non dimensiona time).
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Figure 4: Amplification index a versustime, for agiven wave number.

The amplification a is plotted in Fig. 4 in various conditions. A comparison of its
growth in the quasi-static and dynamic cases (for the rate sensitivities m=0.05 and
m=0.5) provides additional evidence that inertia delays the growth of non uniform
disturbances. Comparing the amplification growth for identical Reynolds numbers but for
different strain rate sensitivities (m=0.05, m=0.5, m=1 in quasi-static conditions) does
show a dramatic increase in the rate of growth of the perturbations as rate sensitivity
decreases, as well as much shorter breakup times. Thus, our assumption of rapid pertur-
bation growth is all the more satisfied that rate sensitivity is smaller. We checked that the
copper rate sensitivity m=0.05 is sufficiently small for the model to be unambiguously
valid.

The model therefore impliesthe following trends. Jet materialswith higher rate sensi-
tivity yield larger breakup timesand larger fragments. Jet materialswith lower strength or
higher density (i.e. higher inertia) yield larger breakup times but shorter fragments. These
predictions are in agreement with common wisdom obtained from experimental data and
nonlinear computations.
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EXPERIMENTS AND DATA ANALYSIS

Comparisons between the model quantitative predictions and typical experimental
data are now attempted on the basis of shaped-charge experiments first described in ref.
[14]. As details can be found in that paper, only a brief account will be given here. The
shaped-charge investigated in thiswork used a 62 mm diameter, 49° conical copper liner.
Two flash X-ray radiographs of the broken jet were taken at 200 s and 250 pis after the
explosive wasinitiated. These radiographs provide the length I, the diameter d, the volume,
the abscissa and the velocity of each fragment. Further analysis allows a kinematic des-
cription of the jet, including the evolution in time of its radius, even before breakup. It
also provides the mean characteristics of the fragmentation process: velocity difference
between fragments, final aspect ratio and breakup time versus fragment velocity. An ave-
rage value of the aspect ratio I/d = 4.25 and a fragment — dependent breakup time in the
range 110-170 s are obtained. A plot of the reconstructed fragment velocity vs. cumul-
ated fragmentslengthisgiveninFig. 5.

Rugosity measurements were carried out on recovered slugs stuck in the target. Only
the rear part of the fragments, free of any contact with the target, was used. The rugosity
was found to be rather homogeneous along the surface, and could be averaged to 14 pm.
Scaled with respect to the estimated initial jet radius 2.5 mm, this leads to the order of
0.005 for theinitial imperfection measure a(0).
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Figure 5: Fragment velocity vs. cumulated fragments length.

Aninitial strain rate of the order of V/ L 0104 s is used. The perturbation meeting
the breakup criterion a(t,) = 1 sooner than any other leadsto the breakup timet, = 132 us.
By the time the jet breaks up, the corresponding perturbation wavelength has evolved to
the final aspect ratio 4.47. The calculated breakup time and final aspect ratio are therefore
compatible with the experimental data: t, = 110-170 psand I/d [14.25.
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CONCLUDING REMARKS

This good agreement shows that the model has the ability to yield the right orders of
magnitude for the main breakup characteristics, when a plausible set of material data and
of initial / boundary conditionsis used. Thusit seemsto retain the essential featuresfor a
basic understanding of the phenomenon, i.e. radial inertia and a two-dimensional formu-
lation of viscoplasticity (with a low strain rate sensitivity). However, the particulation
processis clearly more complex, and a host of different factors should be taken into ac-
count for amore refined modelization. Among the | atter are the non-uniformity of thein-
itial configuration of the jet, the microstructure of the liner material, the thermal coupling
and breakup mechanisms. The influence of the material microstructure can be investiga-
ted by using the model viathe Hall-Petch law, aswell astheinitial jet non-uniformity. The
assessment of the model predictions would then depend on more extensive material and
experimental data.
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