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Two-dimensional simulations of planar sheet jet formation are studied to exa
mine the hydrodynamic issuesinvolved when simulations are carried out in the
inverse direction, that is, with reversed time and flow. Both a realistic copper
equation of state and a shockless equation of state were used. These studies are
aninitia step in evaluating thistechnique asaballistics design tool.

HISTORICAL INTRODUCTION

In 1994, Pai and Kuz' min [1] discussed the dynamic measurement of jet temperatures
using a clever thermoelectric method deploying a transverse thermocouple interface in
the jet generated by a bimetallic hemispherical liner. They did not describe the interfacial
geometry of the bimetallic components of the liner. One of us (LZ) wasinterested in car-
rying out this experiment with auniform wall conical liner to compareitsresultswith pre-
viously published jet temperature measurements [2,3]. A non-iterative method for defin-
ing the required interface geometry for a conica liner, which would generate such a
bimetallicinterfaceinthejet, already existed [4]. In considering this problem, it was natu-
ral to ask, “Under what conditions might this computational problem be run backward in
time, with reversed flow, in order to define the bimetallic interface in the original liner?’
If the reversed-time reversed-flow (RT-RF) problem were generalized and could be suc-
cessfully computed, it could lead to potentially useful design capabilities. It was clear that
thisapproach would present difficult thermodynamic challenges. Aninitial discussion en-
sued between two of the authors (LZ and EJC) in 1995 and they found that, earlier, the
third author (RPG) had discussed the contemplated method and applied it to a simplified
version of aBirkhoff jet [5]. In Godwin’sforward running example, asheet jet and a sheet
slug were formed by two flat plates colliding with each other at a specifled acute angle 23
[6]. In 1992, Godwin had recognized the potential value of the RT-RF method and com-
mented, “ Since there are practical problems for which we wish to produce a particular so-
Iution, running problems backward may be a useful technique.” He also recognized that
an inverse jet is essentially identical to aforward running kinetic energy penetrator. The
Birkhoff 2-D Cartesian planar jet is the analog of a cylindrical long-rod penetrator in the
limit of aninfinitely thick slug sheet.
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This paper will briefly discuss the “Lagrangian Tracer Particle” technique for solving
the thermocouple deployment problem. It will then summarize Godwin’s results for the
simplest 2-D jet problem using the RT-RF technique. The jet-slug configuration obtained
from the forward problem will be compared with solutions obtained from the inverse si-
mulation with flow conditions under which the inverse simulation technique should pro-
duce resultsidentical to those of the forward problem. The introduction of artifacts, such
as extraneous shocks, in the application of the RT-RF method, when using realistic mate-
rial models, will be noted. These artifacts due to irreversible effects are not generated in
the forward problem. The results obtained by deliberate selection of a simplified, shock-
less equation of state (EOS), which minimizesthis problem, will also be discussed.

The essential hydrodynamics occursin the collision zone in the region around the col -
lapse angle B. The engineering definition of a shaped-charge liner and its integration into
the rest of awarhead is recognized as important for practical design. This portion of the
design anaysis involves mainly non-hydrodynamic issues and will not be addressed in
this paper. However, aspects of warhead design that involve the interactions of the explo-
sive with the complete warhead configuration must ultimately be considered. A prelimi-
nary examination of one approach to this next design phase has been carried out by the
fourth author (DRS) using rigid, inelastic guiding templates to redirect and curve the out-
ward reverse flow, along the direction of the collapse angle B, into the original liner
wedge angle a (o < 3). Scheffler began his study by examining the simplest sliding inter-
face problem with CTH, an Eulerian code. He observed the expected computational pro-
blems, concluding that, for this flow-guidance requiring an excellent dliding interface, a
L agrangian code would be more suitable than an Eulerian code [8]. Since this part of the
design process involves the choice of explosive, it could be handled by a computation of
the forward-running plate-deflection problem, which turns a into . However, even in
plane strain, thisisdifficult, since the required profile for aliner of non-uniform thickness
has not been defined. Deriving liner designsfor axi-symmetric jets and EFP’s poses inter-
esting and taxing problems, such as liner thickness changes that occur during the radial
liner collapse of cylindrical warheads. We focus on the basic hydrodynamic problemsin-
volving simple plane strain in the vicinity of the collision zone. We will briefly discuss
work directed toward solving generalized “adjoint hydrodynamics® eguations for use in
design[9].

USING LAGRANGIAN TRACER PARTICLES FOR LINER
DESIGN

Reference [1] discusses a hemispherical liner which places a thermocouple interface
inthe jet, but the interface design is not specified. Reference [4] describes atechnique for
designing abimetallic conical liner interface for deploying athermocouplein ajet. It uti-
lizes multiple (e.g., 10) rows of tracers, each row containing equidistant tracer particles
with up to 99 individually identifiable Lagrangian tracer particles. These rows of tracers
are computationally located in equidistant parallel rows, across theinitial liner thickness,
and perpendicular to the liner surfaces. By running the problem in the forward direction,
with thetracers systematically placed in the original liner, and observing the final location
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of the tracer particles within the jet, the desired initial location of the bimetallic interface
pointsintheliner can beidentified in asingle numerical simulation.

COMPARISON OF FORWARD AND TIME-REVERSED
SIMULATIONS

As shown in the classic paper by Birkhoff, et al. [7,10], the flows associated with a
planar jet formed by the collision of two platesin 2-D Cartesian coordinates can be mode-
led assuming steady-state incompressible flow when the “hinge” angle is above acritical
value [11]. For an EOS of the ideal gas form, the critical angle B¢ is tanfc < (y2-1)-12
[12,13]. Usingy =T + 1~ 3, whereT isthe Grineisen gamma of metas, B.< 19.5°. The
application of Bernoulli’s law along the central streamline is the essential feature of the
Birkhoff paradigm. The model qualitatively describes the conical metal liners of shaped-
charge munitions. However, due to mass convergence, acylindrical fixed-thickness liner
does not allow the choice of a moving frame with a stationary hinge. Since Bernoulli's
law contains only the square of velocities, the streamline equations for isentropic flow are
invariant under time reversal. A reverse Birkhoffjet can be realized in the edge-on colli-
sion of thick (slug) and thin (jet) sheets. Forward and reverse time simulations of the
Birkhoff model were used in validating numerical tools and investigating compressible
dynamics and the associated shocks on jet formation [5,6]. We review those studies here
to assessthe potential of time-reversed simulationsin munition design, that is, of working
backward from adesired final jet configuration to the corresponding initial conditions.

The Chaplygin EOS used in our simulation studies provides a useful approximation to
jet dynamics even though it cannot address shock physics[13]. Karpp used thisEOSin an
analytical study of compressible effects on jet dynamics [14]. The failure of this EOS to
model shocksisless seriousthan it might appear. Table 1 givesanalytical predictionsfor a
copper Birkhoff jet with incompressible flow and with compressible Chaplygin flow
using various parameter choices. Notice that, with Co=100 km/s, the pressure, density,
and internal energy approximate those of incompressible flow. Table 2 summarizes
MESA2D simulation results with arealistic Cu EOS and with the Chaplygin EOS using
Co=10 and 100 km/s; both forward and time-reversed simulations are tabulated. Details
of the EOS assumptions and simulations are described in the Appendix. As expected, the
peak pressure, density, and internal energy density of the Chaplygin simulation with
Co=100 km/s approach those of the Birkhoff model with incompressible flow. The
simulation using Co=10 km/s is qualitatively similar to that with arealistic Cu EOS. The
analytical values for Co=7 km/s show that important parameters for realistic Cu can be
matched by an appropriate Cgy choice. (The small differences between the forward and
reverse simulations presumably result from minor differences in numerical zoning, not
allowing sufficient simulation time for transients to relax, etc. The maximum flow velo-
cities in the simulations slightly exceeded the expected steady-state value. No attempt
was made to eliminate these minor numerical artifacts.)

In Fig. 1, we have plotted material interfaces and isobars near the hinge for the for-
ward and time-reversed simulationswith arealistic Cu EOS. The forward and reversed si-
mulations of 1laand 1b are qualitatively similar, but differ quantitatively. The slug and jet
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flows away from the hingein laare not exactly parallel to the axis because an orthogonal
velocity component has been introduced by the irreversible energy deposition due to a
shock. Similarly, shock heating in the time-reversed simulation causes the outgoing flow
in the “arm” of 1b to spread. The material interface in the time-reversed flow explicitly
distinguishes the portion of the flow originating in the jet, a feature potentially useful in
design. Pressure profilesin the hinge region (isobars = 0.7 Mbar) for the two simulations
are essentially identical. On the other hand, at pressures < 0.35 Mbar, isobars for the two
situations have a different character because of the pressure discontinuity across the shock
intheincoming arm (slug) of theforward (reversed) simulation. Figure 2adisplaystheiso-
barsfor aforward Chaplygin simulation with C,=10 km/s. (The plot for the corresponding
time-reversed simulation is indistinguishable from 2a.) There are no dissipative shocks
when using the Chaplygin EOS. Thus, there is no material heating, no spreading of the
outgoing flows, and no convergence of isobars such as that associated with the shocksin
laand 1b.

Table 1. Predictionsfor aCu jet with B=20° and aplate vel ocity of 2 km/s
(Vo =5.495 km/s).

Birkhoff C,=V, C,=7" C, =10 C, =100
Pressure (Mbar) Ps=1.348 2P; =2.696 1.505 1.450 1.349= Py
MNemax 0 1 0.344 0.151 1.51x10°
Prmax (G/CM) £~8.930 o 13.61 10.52 8.944=p,
i 0 0.151 0.029 1.14x102 1.14x10*
i = internal energy density (Mbar-cm®) * (km/s)

Table 2. Simulation resultsusing arealistic Cu EOS and the Chaplygin EOS.

Realistic Uy/u, Chaplygin, C,=10 C~=100

forward reverse forward reverse forward
Pressure (Mbar) 1.786 1.740 1.461 1.451 1.344
Prmax (¢/CMP) 13.72 13.62 10.68 10.66 8.944

i 0.0237 0.0235 0.0138 0.0152 1.13x10*

CONCLUSIONS

Aside from features associated with shock waves, simulation results obtained using a
Chaplygin EOS resembl e those obtained with a redlistic EOS. The similarity is particu-
larly good near the stagnation and hinge points, which we presume to be important loca-
tions in shaped-charge design. The shock pressures are small compared to the stagnation
pressures, the energy dissipated by shocksis small, and the shocks are spatially separated
from the stagnation points. These features help make the incompressible flow Birkhoff
model such auseful jet paradigm. Our studies suggest using the following procedure may
prove useful in time-reversed design. After selecting afinal jet configuration astheinitial
problem geometry, choose a Chaplygin EOS for usein areversed-time simulation. Then,
to account for the effects of shocks, strength, etc., run aforward simulation using the best

642



Time-Reversed, Flow-Reversed Ballistics Smulations: Do They Have Potential for Ballistics Design?

available material response models with the output geometry of the reversed-time simula-
tion astheinitial geometry. Simulationsin cylindrical and spherical geometry will not be
as simple asthose of a Cartesian problem, which assumes steady-state flow, but we do not
believe thiswill prevent useful design guidance from being obtained through time-rever-
sed simulations.

We note the continuing development of a promising abstract approach, adjoint hydro-
dynamics, for use in optimizing designs [9]. In adjoint hydrodynamics, physics-based
partial differential equations (PDES) are differentiated with respect to the parameters of
interest and transformed into adjoint PDES. Initial applications of

T T T T T T T

Fig. 1a

Figure 1. Material interfaces and isobars for the forward (a) and reversed (b) simulations
with a redlistic Cu EOS. Isobars at 0.175, 0.350, 0.700, 1.00 and 1.20 Mbar. Note the
spreading of thejet and slug in (8) and the“arm” in (b). The grid ticksare 2 mm. Theinci-
dent plate (“arm”) is4 mm thick in the forward simulations.

T T T T T T T T T

Fig. 2a

Figure 2. Simulations using the Chaplygin EOS with Cy=10 (&) and 100 km/s (b). | sobars
in (a) are identical to those of Fig. 1; in (b) the isobars range from 0.122 to 1.22 Mbar in
steps of 0.122 Mbar. Ticks are 2 mm. Note the absence of shocks; (b) closely approxima-
testheincompressible flow Birkhoff jet paradigm.
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this technique proved to be unsatisfactory, but the development of automatic differentia-
tion tools hasimproved its accuracy. Birkhoff jet formation serves as atest problem for va-
lidating numerical adjoint Jacobians. Comparisons of computational resource require-
ments for conventional and adjoint simulations indicate that the adjoint technique will
become efficient when addressing complex design issues involving many parameters.
Using adjoint design can, in principle, account for shocks and other irreversible processes.

APPENDIX

Using the notation of Birkhoff, et a., we simulated the collision of two flyer plates
with ahalf hinge angle 3. In amoving frame, where the hinge point is at rest, the jet and
slug recede from the stagnation point with the same speed (V5) as the plate material ap-
proaches. Inthelaboratory frame, thejet and slug velocitiesare

Vj= Vo(1+cosB)/sinB  and Vs= V(1—cosP)/sinp; (A1)

V, is the colliding plate velocity in the laboratory frame. In the frame in which the
hinge point is stationary,

Ux =—VocosB=—Vecos2B/sinB  and  uy=-VosinB=—V,cosp. (A2)
Bernoulli’slaw givesthe maximum stagnation pressure

To simulate a copper jet, we chose 3=20°, V, = 2 km/s, and py=8.93 g/cm3 which
yield Vp=5.495 km/s (with corresponding jet and slug velocities of 12 and 0.3 km/s) and
Pg=1.348 Mbar =134.8 GPa.

Neglecting material strength, a linear Ug/up Griineisen EOS [15], Ug=Cy+Up, pro-
vides realistic copper modeling with C;=3.94 km/s, s=1.489, p,=8.93 g/cm3, and Grin-
eisen M'=2.002. The numerical simulation of an incompressible fluid requires an infinite
sound speed, which would cause our hydrodynamics code, MESA2D [16], and similar
codes to assume computational time steps of zero and stop. To approach incompressible
fluid behavior for comparison of simulations with the Birkhoffmodel, we chose a simpli-
fied linear Ug/up EOS with s=0 and an unredlistically large Co. This EOS is of the Cha-
plygin form with unique features; it supports neither compressive shock waves nor super-
sonic flow and its density isafunction of velocity only [13]. We used this EOS to provide
an asymptotic approach to inviscid incompressi ble behavior. With our EOS assumptions,

P=poCo?2n and c2=0P/dp= py?Ce?/ p2= Co2(1-n)2, (A4)
where n = 1-py/p. (The pressure behind ashock and shock velocity with the conventional

Udup EOS are P = poCq27 (1~ sn)-1 and Us = Cq [1-sn(1-sn)-1], respectively.) In 2-D
steady-state flow, we have along astreamline[17]
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udu + vdv = —c2dp/p. (A5)

Assuming the y component of velocity, v, and its derivative are zero along the x axis
and and noting that c2dp = dP gives Bernoulli’slaw theform

J.‘/Zttduz—ﬁdP/p or  [aP1p=(V:-u?)/2. (A6)

u

Using the pressure of Eq. (A4)

2 2
J.dP/pz(poCu)Qf:“p’3dp=%(l—p%zj (A7)
yielding the quadratic
P*=2p,C2P+(p,C,) (V2 -u*)=0 (A8)

with the solution
P:p0C3[1i1/1—(\/22—uz)/Cj}. (A9)

When Vo << C,, the maximum pressure (at u=0) approaches Pg, the Bernoulli stagna-
tion pressure, and n approaches zero corresponding to incompressible dynamics. When
Vo = Co—AV, with AV << Vs, C,, the stagnation pressure approaches 2Pg and n - 1,
representing compression to infinite density. In metal jet formation, Vo = 2C,, a situation
which cannot be reproduced with the Chaplygin EOS, since it precludes supersonic flow.
The compressibilities reached can, however, be matched using the Chaplygin EOS. From
thermodynamics, the specificinterna energy

di = ~PdV +AQ = pdp/ p* or i=C§f:ndn+Q=cjn2/2+Q. (A10)

For isentropic flow (Q=0), the internal energies of the nearly incompressible and very
compressible cases approach 0 and V22 / 2, respectively, near the stagnation point.
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