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Experimental data showed that fragment vel ocities originating from the convex
section of a warhead which was initiated at the opposite end are higher than
predicted by the Gurney equation for cylindrical warheads, adapted for end
effects. A novel approach for addressing the multidimensional nature of the ve-
locities of fragments originating from the convex section of awarhead is pro-
posed. Two limiting conditions are defined, i.e. for fragments on the circum-
ference of a cylindrical charge and fragments on a cylindrical charge in an
open-face sandwich configuration, respectively. An asymptote matching tech-
nigue is then used to obtain an expression that describes the transition between
the two respective asymptotes.

INTRODUCTION

Many calculations of velocities of explosively accelerated items are successfully done
via sophisticated numerical procedures incorporating the equations of states of the mate-
rial and strength models. However, it is often a tedious (and difficult) task to set-up the
problem and even with the new generation software, solving these problems can be time-
consuming. Therefore, thereis still the requirement of simple empirical and/or analytical
proceduresto estimate the initial velocities and ejection angles of explosively accelerated
items. The well known Gurney formulas [1] which are even today used in many applica
tions, give sufficiently accurate vel ocity predictionsin certain configurations.

The problem of handling the end-effects in cylindrical charges for fragment sleeves
around the circumference of cylindrical sections has been addressed by a number of au-
thors. Most notably the definition of the ‘relaxation coefficient’, Fy, by [2] which broade-
ned a concept used by [3] facilitated a direct reduction of the charge-to-metal mass ratio,
C/M, inthe standard Gurney formula:
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The Fy factor in eg. (1) was derived from numerical results of various configurations,
and is dependent on M/C aswell as L/D. This prediction methodology was further exten-

ded by [4] and [5].
Thefollowing expression for the relaxation factor Fy was proposed [2]:
2 2
Fy =|1- 1 1- T2 '
Ry Ro )
where
n nz
Ll:1—n1 x ; 2 _1.5 o X (3)
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Theindices 1 and 2 in above equations represent the initiation end and the end oppo-
site initiation, respectively. The numerical values of n1 and no depend on the charge-to-
metal massratio (C/M) of thewarhead.

With a convex shaped warhead it was found that the actual fragment velocities are
higher than the predicted velocitiesin the curved (or convex) section of the warhead. The
reason for this phenomenon isthat the Gurney equation used in the cal cul ations was deri-
ved for along cylindrical warhead and the C/M used istheratio of the whole charge mass
to the total mass of the surrounding material. In the prediction model the warhead is typi-
cally divided into discs, each with alength equal to the fragment length, of which the ra-
dia C/M is then calculated and used in the Gurney equation to obtain the velocity of a
fragment in that specific ring. This use of the Gurney equation is, however, a deviation
fromits‘intended’ use and may result in incorrect velocities.

In eg. (1) the C/M was scaled to account for the reduction in velocities due to end ef-
fects. For convex shaped warheads one can argue that this correction is too severe and
therefore the Fy-correction factor needsto be adjusted.

‘VOLUMETRIC’ CORRECTION FACTOR

The velocities in the convex part of the warhead can be corrected by artificially ad-
justing the C/M using a‘ volumetric’ correction factor by introducing an additional coeffi-
cient to the correction factor Fy:

2

n n

n Ry ra Ro
Ry Iy Ro Iy
where R1 and Ry aretheradii of initiation and opposite ends, respectively, of main charge,
ry istheradius of the main charge at distance x from the initiation end, a;b and n are empi-
rical constants. This effectively increases the magnitude of Fy and consequently the frag-
ment velocities.

A similar model was described in [6] where the relaxation coefficient is based on the
concept of [3]. In the model the following values for the empirical constants in eg. (4)
wereused: n=2,a=0.7 and b=0.8. The main criticism to this model isthat eq. (4) does
not revert to eq. (2) if thewarhead iscylindrical .

Fy = |1- 1- b ) 4
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MULTI-DIMENSIONAL MODEL

The problem under consideration is multi-dimensional dueto the effects of therelease
waves aswell asto the convex shape of the warhead. When considering the gjection velo-
cities of fragments from a convex shaped warhead one can argue there are two velocity
components involved, i.e. the radial component and an axial component. In the calcula
tion of the fragment velocities, using eg. (1) only the C/M calculated in the radial direction
is used. For the convex section of the warhead it is evident that the section of the charge
behind the fragmentsin the axial direction also contribute to the acceleration of the frag-
ments. Consequently the C/M in the axial direction also needsto be incorporated into eg.
Q).

Referring to Fig. 1, the radial charge-to-metal mass ratio, (C/M)R, can be calculated
asfollows:

2
_ Pcr
(C/M )R - ex 2 2 4 (5)
P ((rx +teffR) —Ix )
wherery istheradius of the charge at position x, p¢ isthe density of the charge and pr the
mean density of the surrounding material. The effective thickness of the fragment in the
radial direction, teff isgiven by
_ b
" cos6’

leff (6)

where t; is the thickness of the fragment and 6 is the angle between the fragment and the
horizontal axis. Similarly, theaxial charge-to-metal massratio, (C/M)p, is.

PcX
C/M ), = :
€/M)a orlar, ™

where x isthe axial position of the fragment and the effective thickness of the fragment in
the axial direction, teff», iSgiven by

ne’ (8)
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Figure 1: Schematic representation of warhead.
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From eg. (5) to eg. (8) it isclear that the C/M is afunction of the tangent to the frag-
ment. The axial charge-to-metal mass ratio, (C/M)p, is zero in the cylindrical part of the
warhead and gradually increases towards the convex section of the warhead, whereas
(C/M)R is a maximum in the cylindrical part of the warhead and decreases towards the
convex section. Two methods of combining the above limiting conditions will be investi-
gated. Firstly, asingle expression for the C/M can be obtained by combining eg. (5) and eg.
(7) into a single expression using an asymptote matching technique. This expression will
then be used in eg. (1) for the prediction of fragment vel ocities. The second approach isto
“defing” another expression for predicting the axial component of the velocities using
(C/M)p, and combine it with eg. (1) (and (C/M)R) by means of an asymptote matching
technique.

ASYMPTOTE MATCHING TECHNIQUE

Often in transport processes the limiting solutions for large and small values of anin-
dependent variable are known but solutions for the intermediate cases are not in closed
form. Churchill and Usagi [7] proposed a general expression which interpolates between
the two limiting solutions, thereby obtaining solutions for the whol e range of the indepen-
dent variable.

Method 1: Combined C/M representation
Using the asymptote matching technique described above an expression for C/M can
be obtained which incorporatestheradia aswell astheaxial C/M’s, yielding

Vn ©)

/M =|(cM )R +(c/m)]

where the shifting parameter, n, determines the extent of overlap between the two physi-
cal conditions described by the two limiting expressions.
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Figure 2: Method 1: Combined C/M representation.
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In Fig. 2the C/M’s, using eg. (9) for various values of n, are shown. Asillustrated in
Fig. 2, anincreasein n would cause eg. (9) to follow the asymptotes more severely.

Method 2: Combined open-face sandwich and cylindrical
configurations

Aspreviously discussed, the radial velocity component may be addressed by the Gur-
ney equation for cylindrical warheads, corrected for end effects. However, another com-
ponent to the Gurney equation needs to be added to account for the axial velocity compo-
nent. A semi-empirical model was proposed in [8], based on similar principles used in the
derivation of the Hennequin model, for the prediction of the velocities of fragments, or
segments of adisc, which are projected off the opposite end of an end initiated cylindrical
charge. Through the introduction of a gas-relaxation term, Fy, the open-faced sandwich
Gurney formulacan then bewritten as:

_1/2
vs:FzEll M (10)
3 CFy y
where
M L
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with
| m n
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(c D p[ M) L (y)[ D]

and k, |, mand n positive empirical constants.

Eqg. (1) and eg. (10) can be considered to be two limiting conditions, i.e. for fragments
on the circumference of a cylindrical charge and for fragments on acylindrical chargein
an open-face sandwich configuration, respectively. It is therefore proposed that a single
expression for the prediction of the fragment velocitiesis obtained by combining egs. (1)
and (10) through asymptote matching, namely

v= (vé1 + vg)ﬂ” : (14)
In Fig. 3 the velocities according eq (14) are shown for various values of the shifting

parameter n. Also shown in the figure are the two asymptotes, i.e. the velocitiesin thera-
dial and axial directionsrespectively.

659



Warhead Mechanics

2500

—o—V(radiad)  ------ v (axial)
——n=13 —%—n=17

—*—n=25
2000

ex
*‘““u‘“&i’{f{x )
Ky
1500 S
1000 1

500

Fragment velocity (m/s)

0 Orl OiZ 0.‘3 014 0.‘5 O.‘G 0‘.7 018 019 1
Relative position on warhhead
Figure 3: Velocities according Method 2: Combined open-face sandwich and cylindrical
configurations.

CONCLUDING REMARKS

In Fig. 4 the various models are compared to experimental data. It is clear fromthere-
sults, that even for very high values of the shifting parameter (n = 8), Method 1, i.e. with
the combined C/M representation, gives unrealistic results. The reason for thisis that in
the convex section of the warhead the axial C/M starts dominating, and using this relati-
vely large value of C/M in the cylindrical Gurney equation, eg. (1), predictstoo large velo-
cities. Thevelocity predictions according Method 2, i.e. the combination of the open-face
sandwich and cylindrical configurations by means of asymptote matching, matched the
test datarelatively good. This can to alarge extent be expected because the shifting para-
meter n was used to obtain arelatively good transition between the two limiting condi-
tions. Additional test data and maybe data from finite-difference modelling are, however,
needed to evaluate the general applicability of eq. (14).
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Figure 4: Comparison with experimental results.
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