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INTRODUCTION

During the design of a shaped charge, the designer is often faced with the problem of
determining which computational design is best. The selection process is highly subjec-
tive and based on intuition and years of experience. By and large this approach has
worked rather well. The use of hydrocode modeling has further reduced the unknowns and
assumptions that were built into the analytical models. This improved modeling accuracy
has made it possible to further refine designs that have subtle differences. This coupled
with the relative maturity of shaped charge technology results in performance gains that
are often measured by a few percent. These minor differences in jet characteristics incre-
ase the difficulty in selecting the better design. At the same time, due to advances in com-
putational speed, much of the design is becoming more automated via optimization codes
or parametric runs. This design methodology exacerbates the challenge to select the better
design from hundreds of runs rather than a handful of designs. This introduces the need to
have a single parameter that represents a measure of jet goodness, which we will refer to
as a. This paper presents a method for establishing the relative ‘goodness’ of any jet.

There are a number of characteristics that we examine during the comparison of two
charge designs. For the initial screening, we may examine the physical characteristics of

Shaped charge jets are usually characterized by their jet velocity and jet mass
profiles. This information is presented in the form of a plot of these two varia-
bles. From these plots, designers can form a mental picture of the jet: ‘it is stret-
ching here, there is little mass in this region and therefore a small diameter
here’, etc. Comparisons of various designs are possible for these figures, yet it
requires a subjective interpretation to decide which design may be better. Fast
computational methods can easily generate hundreds of design results, thereby
overwhelming the designer with too many options. We herein outline a method
for reducing the jet velocity and jet mass profiles to a single value that allows
the rapid screening of results.
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the design: explosive and liner mass, initiator type (point, plane, ring), manufacturing
complexity, etc. The various trade-offs are easy to quantify and sort. After this screening,
we usually examine the estimated jet properties. The predicted jet is usually characterized
by its mass and velocity distribution, much like its experimental counterpart is deter-
mined by flash x-radiography testing. Of particular interest is the tip velocity as it is critical
in the determination of the early jet length and reflective of the penetration capability. The
mass distribution along the velocity gradient (or jet length) can be correlated to the jet
break up time, which also significantly influences the penetration capability. The velocity
gradient is proportional to the strain rate, which also influences the breakup time. The
mass per unit velocity also indicates the kinetic energy of the jet, which controls the hole
volume within a target. Other parameters that may be examined are the flow velocity dur-
ing collapse to insure the formation of a stable jet. One may also look at the collapse
angle, particularly to see if there are possible interferences between the liner collapse and
the forward section of the warhead. The origination of various mass elements may be
tracked to maximize the working length of the liner and optimize the energy coupling be-
tween the liner and the explosive.

As the database of shaped charges has developed since World War II, it has become
possible to establish criteria or working limits for some of these characteristics. At the
same time, it has become feasible to analyze a target and determine the length and energy
of penetrator that is required for defeat. This makes it possible to ‘reverse’ engineer the
ideal jet, which then becomes the design goal. In the case of product improvements, the
deficiencies of the current charge are known as well as what corrective action is required.
For example, it may be adding a few grams of mass to the tail of the jet or increasing the
tip velocity by 0.3 km/s. In either case, one can develop a jet velocity-mass curve that re-
presents the improved or ideal jet. 

APPROACH

The general approach is to numerically compare the computational jet to the ideal jet.
It is easy for a designer to look at a plot of two curves and decide if they match. It is more
difficult for a digital computer to be programmed to do the same. If the shape of the jet
mass profile were linear, it would simply be a matter of matching the slopes and inter-
cepts. Fitting a mathematical curve, such as a higher order polynomial, to the jet velocity-
mass profile, could be an approximation. However, one would have to match multiple
coefficients. Taking a sufficient number of derivatives of the polynomial curve could lead
to a linear formulation that could be compared; however, much of the specific shape func-
tion is lost in the process. Similarly, a least squares regression could be used to fit a best-
fit line to the jet velocity-mass profile. This approach still requires the comparison of the
resultant slope, intercept and correlation coefficient. Even if all three values were to
match, one is still not guaranteed that the original curves match. Unfortunately, there is
not a simple, unique solution to the linear approach. Another approach would be to look at
the area under the curve. However, there are an infinite number of curves that will yield
the same area. 
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Our approach is to discretize, on a mass basis, three different jet characteristics: velo-
city, momentum, and kinetic energy. Granted the third is a combination of the first two;
however, the square factor of the velocity in the energy terms adds some uniqueness. The
velocity, momentum and kinetic energy are plotted as a function of mass. Each curve is
subdivided into separate mass regions, usually ten. The sub-division should reflect any
specific feature that needs to be identified. Accordingly, we use smaller mass increments
to resolve the jet tip. The average velocity, momentum, and kinetic energy for each incre-
ment are calculated. These values are stored in a look-up table. This table becomes the
descriptor of the ideal jet. For subsequent design calculations the process is repeated in
the same manner. Then the differences for each mass subdivision between the current de-
sign and the idealized jet are calculated. Each difference is squared to eliminate the possi-
bility of positive and negative differences canceling each other. These squared differences
are then summed over all the subdivisions. The square root of each of these three sums is
divided by the total cumulative values of the ideal jet. The three quotients are then sum-
med to produce a single value. 

The difference between the ideal and computed tip velocity is added as a fourth distin-
guishing factor. This difference must be multiplied by a suitable scale factor such that its
importance is properly weighted and then added to the previous single sum. This net re-
sult is a, our measure of jet goodness. We have found that the weighting factor applied to
the tip velocity can promote rapid convergence to the tip velocity while still experiencing
variations in the jet mass.

EXAMPLE 

This technique is illustrated through the application to an example problem. Consider
the 48mm explosive diameter charge shown in Figure 1. It is a copper-lined, cylindrical
charge that is point initiated. This is a non-optimized charge that produces a jet tip velo-
city-mass profile shown in Figure 2. However, for the purposes of this example, we as-
sume that we desire similar jet tail properties and the jet tip velocity should be 7.6 km/s.
Figure 2 also shows the mass division of the jet. The jet momentum and jet kinetic energy
plots were divided similarly to develop the look-up table.

Figure 1. Configuration of shaped charge for example application of methodology.
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Figure 2. Comparison of the ideal jet and the original point-initiated jet. The gray and
white regions show the mass sub-division of the ideal jet.

A simple design modification is to change the detonation source from point to ring in-
itiation. The GLO software package [1] was used as the optimization driver. The figure-
of-merit was the jet goodness value, a. Shown in Figure 3 are the results of this simple ap-
proach. These runs were completed using CTH running under Linux on a PC. The
problem was coarsely zoned (approximately 3 cells through the liner thickness.) Typical
run time is about ten minutes. This permits quick convergence to the approximate solu-
tion space. After twelve iterations, we find the ring diameter and axial location that produ-
ces a jet that matches the ideal jet. The figure-of-merit values are reported in Table 1. A
more finely zoned computational model could be used to further improve the fidelity of
the model and improve the agreement. Our experience has shown the GLO software pac-
kage integrates well with CTH and develops reasonable solutions. We find that the a para-
meter converges as the jet velocity-mass curves converge.

Table 1. Optimization convergence figure-of-merit
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Design Jet Goodness Value,  a
Point initiated 166
Iteration 1 Jet 101
Iteration 4 Jet 57
Iteration 12 Jet 38



Figure 3. Shown are the converging jet velocity-mass profiles due to the optimization of
the ring-initiation. 

This approach has application in addition to checking for convergence. The parameter
can be used to determine if a resultant jet still matches the ideal. Consider the prior exam-
ple. Once the ring initiation is known, the body could be boat-tailed to reduce the explo-
sive quantity. In this case, the figure-of-merit then becomes the explosive mass, not the jet
character. We can use the a term to assure that the jet does not deviate from its character as
a constraint. The GLO package also handles this type of optimization. We find that a sim-
ple boat-tail reduces the explosive mass from 221 g of the point-initiated design to 148 g
of the ring-design. The a parameter remains the same for the ring-initiated charge and the
boat-tailed charge, insuring that the jet velocity-mass properties are retained.

CONCLUSION

Other researchers have used optimization routines to improve a single jet feature, such
as the tip velocity. However, the rest of the jet is usually not treated. The approach descri-
bed herein offers a mean of describing the entire jet velocity-mass character. The use of a
single figure-of-merit to quantify the jet goodness permits the rapid comparison of a mul-
titude of designs and facilitates the use of modern computer-aided design methodologies.
This approach can be further refined via weighting factors to introduce faster conver-
gence in optimization approaches. While the approach may not reflect high technology or
advanced mathematics, it does demonstrate that a simple routine can be used to eliminate
the subjective assessment of the ‘goodness’ of a particular design. 
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