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INTRODUCTION

Analytical models of shaped charge jet formation are based on the hydrodynamic
theory, assuming incompressible liner material, stationary process and plain symmetry.
None of the assumptions of the hydrodynamic theory are valid in reference to metal, coni-
cal liners and nonstationary process of jet formation. However, the analytical models are
willingly used for the sake of their low computational cost in comparison with hydro-
codes [1]-[4]. In this work results of an analysis of various elements of analytical models
proposed in the literature are reported. The analysis was performed by making compari-
son of the shapes of collapsing liner, jet and slug calculated by the analytical model, de-
termined experimentally and calculated by a hydrocode [5]. Some improvements into
existing analytical models are proposed in order to achieve better agreement with the re-
ference data. The improvements concern the formula for the maximum liner element ve-
locity, the expression describing time dependence of the velocity, the criterion of choos-
ing the moment, when a given liner element enters the collision zone, and treating of the
inverse velocity gradient region.

Some improvements have been proposed into analytical models of shaped
charge jet formation. The maximum velocity of the liner is estimated by the use
of the Gurney type formula for the open cylindrical sandwich with modifica-
tions taking into account the influence of the shell. A new expression for the ve-
locity history is proposed. The equations of the trajectories of liner elements are
numerically integrated. Calculated profiles of collapsing liners agree well with
results of experiments and hydrocode calculations. A new purely geometric cri-
terion of the choice of the moment, at which a given liner element enters the
collision zone has been derived. A gradual formation of the leading particle by
interactions of adjacent jet particles is considered. A reasonable agreement be-
tween velocity distributions in the jet calculated by the analytical model and a
hydrocode has been obtained.
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DESCRIPTION OF THE MODEL

All the analytical models make use of the basic formulae of the hydrodynamic theory
that combine the velocity of a liner element v, the dynamic deflection angle β and the
mass of liner element m with the velocities of the jet vj and the slug vs, as well as the jet
element mass mj and the slug element mass ms. In the considered model the following
form of the formulae is used

vj = vx – vr ctg(1-2 β) , vs = vx + vr tg (1-2 β) (1)

mj = m sin2(1-2 β) , ms = m cos2(1-2 β) (2)

where vx , vr (<0) mean the axial and the radial components of the velocity of a liner ele-
ment at the moment of entering the collision zone.

The following formula is derived in [6] for the estimation of the maximum liner velo-
city

(3)

(4)

(5)

where C means explosive mass assigned to a given liner element, rs, ri – external and
internal radius of the explosive charge, ∆l, ∆S – length and surface area of a given liner
element, pCJ – detonation pressure. As the quantity A depends on v0 the above relations
can be transformed into a second order algebraic equation and elementary solved in refe-
rence to v0. 

The above formula refers to the shaped charge with no shell. In order to take into ac-
count the influence of the shell, the following solution was tried. Fig. 1 shows calculated
velocity values for a test charge described in [7]. Plot 1 corresponds to the formula (3),
plots 2 and 3 to the formulae for the open and the closed plane sandwiches

(6)

(7)

where M means the shell mass assigned to a given liner element.
It can be seen that the influence of the symmetry is essential only at the liner apex. On

the other hand the influence of the shell near the apex is relatively weak (assumed steel
shell with the thickness equal to 10% of CD can be considered as very heavy). That is
why the maximum velocity can be calculated by the formula (7) and then the influence of
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the symmetry is considered by subtracting the difference between v0 values calculated by
the formulae (6) and (3)

v0 = v0(7) – [v0(6)-v0(3)] (8)

Figure 1: Plots of the maximum liner velocity versus the initial axial position of liner ele-
ments (x = 0 – liner base), 1 – formula (3), 2 – (6), 3 –(7).

The following expression describing time dependence of the liner velocity was propo-
sed in [6] and is widely used in analytical models

(9)

where T means the time corresponding to the moment the detonation wave reaches a
given liner element, τ is calculated by the use of the formula (5).

The equations of trajectories of liner elements are integrated numerically. Similar ap-
proach was used in [4], [8] and [9]. The liner is divided into elements. Locations of the
mass centres xci, rci , inner and outer liner surfaces xwi , rwi , xi , ri, liner element mass mi ,
assigned masses of explosive Ci and the shell Mi are calculated – Fig. 2. Then maximum
velocities v0i, starting times Ti, time constants τi are determined. Initial values of time de-
pendent locations {zci , yci , zwi , ywi , zi , yi}={xci , rci , xwi , rwi , xi , ri} and velocity com-
ponents {vxi , vri} = {0,0}are put.

The velocity components are determined by making use of the fact that the accelera-
tion vector is normal to the liner surface. Thus, knowing the velocity components at time t
we can calculate their approximate values at t + ∆t by the formulae

(10)

(11)

(12)
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Figure 2: Determination of the locations of the mass centre and the inner and outer surfaces
of a liner element (a); assignment of the explosive and shell mass to a liner element (b)

New locations of the mass centres are calculated by the numerical integration

(13)

(14)

Assuming incompressible material of the liner we can calculate from geometrical re-
lations new locations of the outer and inner liner surfaces zwi , ywi , zi , yi.

Choosing the final moment of the liner motion is an essential problem. In [8] and [9]
the moment is chosen, when the outer radius of a liner element becomes equal to the esti-
mated slug radius. This approach is chosen as a starting point in the present analysis. In
each time step the radius of the slug for the utmost left liner element is estimated by the
formula

(15)

where ρJ means the density of the jet material (in the case of porous liners it is put equal
to the density of the monolithic material). When rzi < yi , the utmost left liner element is
divided into jet and slug elements. The velocities of the jet and slug are calculated from
(1), while the radius of the jet is calculated from

rji = sin(1-2 β)q (16)

Since that moment the motion of the liner and the slug elements is tracked. The initial
axial coordinates of their tips and tails are calculated from the formulae

(17)

(18)

In each time step new positions of jet element tip zjpi, jet element tail zjki, slug element
tip zzpi and slug element tail zzki are calculated, assuming that the elements move with a
constant velocity. Depending on the relation between velocities of adjacent elements we
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can have to do with two effects – Fig. 3. The elements can overlap each other or a gap be-
tween them can form. In the first case locations of the elements tips and tails, their radii
and velocities are changed. We assume that their velocities become equal (inelastic colli-
sion). From the conservation of momentum law we obtain

(18)

(19)

Figure 3: Possible interactions of jet or slug elements

New radii of elements are calculated assuming that after the collision both elements
have equal length, values of zpi i zki+1 do not change and new mass of a given element is
equal to the total mass between cross sections z’ and zpi (element i) and zki+1 and z’ (ele-
ment i+1). In the case of a gap, lengths and radii are only changed. The same elongation
and constant volumes of each element are assumed.

ANALYSIS OF THE MODEL AND ITS MODIFICATIONS

Fig. 4 shows shapes of a collapsing liner and a slug claculated for a test charge by the
use of the described model. They are compared with the results of hydrocode calculations
and experiment from [7]. It can be seen that the analytical model forecasts too slow mo-
tion of the liner. Obtained results suggest that the expression (9) for the velocity history
should be modified. Taking into account that the formulae for the plane symmetry proved
to be valid for the most part of the liner, a simple model was considered of two plates
launched in the opposite directions by an ideal gas charge with the polytropic exponent
equal 3. The uniform pressure field between plates was assumed. The following formula
describing time changes of the liner velocity was derived

(20)
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Figure 4: Collapsing liner and slug shapes for t = 8.7, 10.7 and 13.7 µs; solid line – analyt-
ical model, dashed line – hydrocode [7], points – experiment [7]; v(t) – (9)

Figure 5: Collapsing liner and slug shapes for t = 8.7, 10.7 and 13.7 µs; solid line – analy-
tical model, dashed line – hydrocode [7], points – experiment [7]; v(t) – (20)

Eq. (20) gives somewhat faster velocity increment than eq. (9). Moreover, the time con-
stant τ calculated from (20) is lower than calculated from (5). That is why, a faster motion
of the liner is forecasted by the use of (20). As a result, shapes of the collapsing liner bet-
ter agree with the hydrocode results and experimental records – Fig. 5.

The analysis of the results of calculations revealed that the location of the inner sur-
face of the liner at the moment of jet formation was closer to the axis than estimated liner
radius. Therefore, the condition for the choice of the final moment of the liner motion
should be modified. A new condition was derived basing on the following consideration.
The parts of a liner element forming the jet and the slug move inside the collision zone
along some curved trajectories – Fig. 6. The force acting on a given element in the colli-
sion zone is a centripetal force

F = mv2 / R (21)

Since F=pS, m=ρSd, where S –surface area of an element, p – pressure, ρ – density, 
d – element thickness, we have

R = ρ dv2 / R (22)
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Figure 6: Motion of elements forming Figure 7: Calculated velocity 
the jet in the collision zone distributions in the jet

Assuming p ~ ρv2, we come to a purely geometric condition R ~ d. Making use of 
(22) and taking typical values p = 50 GPa, v = 4000 m/s, ρ = 8900 kg/m3, we obtain 
kR = R / d p ≈ 2,8. The value kR = 3 was assumed. The thickness of an element forming the
jet when entering the collision zone was accepted for the value of d. The condition for the
determination of the final moment of the liner element motion was obtained

(23)

Since that moment the motion of liner material forming the jet and the slug is model-
led as the circular uniform motion. The element forming the jet makes 180°-β angle rota-
tion, while the element forming the slug makes β angle rotation. After rotation, they move
as the jet and the slug elements.

SUMMARY

The performed analysis showed that some concepts of the analytical models proposed
in the literature should be modified in order to attain better agreement with the results of
hydrocode calculations and experiments. A method of estimating the maximum liner ve-
locity was proposed on the basis of existing formulae for the plain and cylindrical open
sandwiches. A new formula describing time dependence of the liner velocity was pro-
posed. The new formula gives a reasonable agreement between calculated and recorded
shapes of the collapsing liner. A new, purely geometric condition for the determination of
the final moment of the liner motion was derived. It provides a realistic assessment of the
moment, at which a jet element emerges from the collision zone. As a result, a reasonable
agreement between velocity distributions in the jet calculated by the analytical model and
hydrocode has been obtained – Fig. 7. A broader analysis of the modified model will be
given in a separate publication.
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