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Spin formed Cu shaped charge liners are known to produce a rotating jet and
are used for the spin compensation effect. The causes of spin compensation can
be mechanical in nature or can be grounded in microstructural issues such as
texture, residua stress, grain size, and morphology variations. This investiga-
tion focuses on determining specific microstructural parameters that influence
jet rotation and modeling the jet formation process using anisotropic plasticity
in a 3-D finite element framework. The experimental texture has been mapped
onto a finite element grid for 3-D modeling to obtain the normal-shear defor-
mation coupling information needed to construct aplastic flow potential. Simu-
lations of acollapsing ring and extending rod demonstrate rotation.

INTRODUCTION

Spin formed Cu shaped charge liners have been shown to produce a rotating jet and
are used for the spin compensation effect. The rotational velocity was experimentally me-
asured by Winer et al. using a high-resolution image-converter camera [1]. Early studies
by Gainer and Glass [2] and Glass et d. [3] of shear-formed liners suggested residual
stress or anisotropy as possible causes of spin compensation. This anisotropy can be me-
chanical in nature or can be grounded in microstructural issues such as texture, residua
stress, grain size, and morphology variations. Chou and Segletes [4] modeled the jet rota-
tion with an analytical model and finite-element code in two-dimensions. The source of
rotation in their study was microstructure-induced anisotropy in the form of normal-shear
coupling where applied stress can induce a shear in an orthogonal direction. Normal-
shear coupling based on the measured crystallographic texture provides the driving force
for the rotation in the present study.

Variations in texture were traditionally studied by X-ray diffraction techniques, but
this has the disadvantage of an indirect correlation with the actual microstructure. With
the advent of scanning electron microscopy-based electron backscatter diffraction
(EBSD), it is now possible to make a direct comparison between texture components and
their spatial location in the microstructure. Thisinvestigation focuses on determining spe-
cific microstructural parametersthat influence jet rotation and modeling the jet formation
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process using anisotropic plasticity in a 3-D finite element framework. The experimental
texture in the form of the orientation distribution function has been mapped onto a finite
element grid for 3-D modeling to obtain the normal-shear deformation coupling informa-
tion needed to construct a plastic flow potential. This flow potential was used in 3-D si-
mulations of acollapsing ring and astretching rod.

RESIDUAL STRESS MEASUREMENTS

Residual stresses were determined by neutron scattering at various points along the
wall of the liner. The stress components at the mid-wall position, shownin Table 1, reveal
that the normal stresses are small, but the in-plane stresses are quite high. The residua
stresses are not included in theseinitia calculations, but are available for implementation
at alater date.

Table 1: Neutron diffraction measurements of theresidual stress at the mid-wall.

Position o'y, (MPa) o', (MPa) 05 (MPa)
Thickness Circumferential Longitudinal
A (near apex) 5+35 -16 £ 35 22+ 35
B -55+35 105 + 35 28+ 35
C 27+ 35 -103 + 35 16 £ 35
D -3+35 -67 + 35 -6+35
E (near base) 72 + 35 -53+ 35 12 + 35

MICROTEXTURE DETERMINATION

Detailed EBSD measurements were performed to eval uate the change in microtexture
from the apex to the base as well as through the thickness of the liner. A polefigure, which
represents the texture 0 to 260 microns from the inner surface at alocation near the apex
of the liner, is shown in Fig. 1. The (100) pole figure reveals that the strongest texture
component isaligned 45° to the axis that runs from the apex to the base and is a result of
shear deformation due to the spin forming process.

Figure 1: Pole figure obtained from EBSD near
apex, inner surface, 0-260 pm depth. ND is normal
to the outer surface of the cone, RD runs from the
A LK . .

/ s apex to the base, TD is circumferentia to the sur-
4| face.
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CONSTRUCTION OF A REPRESENTATIVE VOLUME ELEMENT

The motivation behind the detailed characterization of the shaped charge liner is to
enable the creation of a 3-D representative volume element (RVE) model for the
polycrystalline material which can be queried to provide property information consistent
with the measured microstructure. To accomplish this, salient characteristics of the micro-
structure (orientation and grain volume fraction) need to be extracted from the section
dataand used to construct a plausible 3-D polycrystal geometry.

The data obtained from EBSD analysis of the shaped charge liner was run through a
clean-up procedure available in the TSL [5] software to eliminate points with low confi-
dence indices. Individual orientations were then associated with particular grains based
on proximity and misorientation from neighboring points. This created a set of grainsto
be used in constructing the RVE.

The 3-D RVE to be constructed is a cube comprised of grains. Since the finite element
analysis requires each hexahedral finite element to be of only one orientation, it is con-
ceptually straightforward to imagine that the representative volumeis divided into aregu-
lar array of finite elements, each assigned an orientation based on its location in the 3-D
grain structure. However, arriving at this configuration is not trivial since grains of speci-
fied volumes must be assembled in amanner that fills space.

The representative volume is constructed by creating virtual grains of specified volu-
mes, combining them in afinite size box, rearranging the grains to minimize overlap and
gaps, and finally eliminating any overlaps and filling al gaps [6]. The initial grains are
constructed by assembling sets of identical small cubes into clusters. The number of
cubesin each cluster is proportional to the volume of the grain. The total number of cubes
used in constructing the clusters is chosen to be approximately 30% more than the tar-
geted number of elements for the finite element analysis. The clusters are placed in the
space defining the RVE on alattice corresponding to the finite elements. Initially thereare
overlapping elements and gaps. The clusters are then randomly either moved a step or ro-
tated 90° about one of the orthogonal coordinate directions. If the configuration isimpro-
ved, interms of overlaps and gaps, the change is accepted. Otherwise, it is either accepted
or rejected based on a probability function that decreasesin time.

When the configuration has stabilized, lattice orientations associated with each cube
cluster are assigned to the corresponding elements of the finite element model. If more
than one cube occupies an element, the last cube to move to that location is chosen. For
the small number of empty elements that remain, the orientation of a randomly chosen
neighboring element is assigned. A representative volume element created by this techni-
gueisshowninFig. 2.
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Figure 2: Example of arepresentative volume element reconstructed from EBSD data.

EVALUATION OF MATERIAL ANISOTROPY

The mechanical response of each zone of the polycrystal representative volume ele-
ment is determined through use of a crystal plasticity finite element model which ac-
counts for deformation by slip on prescribed slip systems. The elastic-visco plastic model
fully accounts for finite deformation and reorientation of the crystal lattice with strain.
Theimplementationin ALE3D [7] isidentical to the ABAQUS/Standard [8] implementa-
tion [9] which has been used extensively for both single and polycrystal analyses of FCC
materials[10,11].

The crystal elastic constants and slip system hardening were chosen to be consistent
with copper. Slip was assumed to occur exclusively on the twelve {111} <110> dlip sys-
tems, and Taylor hardening was assumed where all slip systems have the same strength.
Since the result of interest from the numerical analyses is the anisotropic response of the
RVE at modest strains (15%), neither the elasticity nor the particular form for the strain
hardening have a significant impact on the results. The assumption of egqual interaction
among the dlip systems, the Taylor assumption, will affect the anisotropy predictions.

The particular information which needs to be extracted from the polycrystal RVE is
how the material deformswhen subjected to stress. In simplest form, one can assume that
the direction of the plastic strain rate tensor, dP, is alinear function of the stress deviator
tensor,o’:

d*=AK:g' 1)
K isaconstant fourth order tensor mapping the stress direction to the strain rate direction,

and A is afactor that adjusts the magnitude of the strain rate. Under the assumption that
plastic flow occurs in a direction normal to the yield surface (normality flow rule), this
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linear form is consistent with a generalized von Misesyield function with ayield surface,
¢ defined as,
3 . _

(p_Vzc'K'd [ 2
where g is the equivalent flow strength of the material. If K were equal to the identity
tensor, the yield surface and plastic flow model would be identical to classical Jo-flow
theory.

The goal of the analyses on the representative volume element is to determine the
fourth order tensor K. If eq. (1) iswritten in matrix form where both the stress and plastic
strain rate are represented by vectors of length 6, the K matrix has 21 entriesto be deter-
mined. To ensure that all potential deformation couplings are sampled when exercising
the RVE, six independent calculations are performed. These are isochoric extensions in
the three coordinate directions and three pure shear deformations in orthogonal planes.
The six resultant stress components for the RVE are determined for each simulation by
averaging the stress components of the elements.

The result of these simulationsisthe stress as afunction of total strain rate. However,
eg. (1) requires the plastic part of the strain rate. Using the additive decomposition of the
strain rateinto elastic and plastic parts and employing Hooke's law relating the stress rate
totheelastic strain rate, an expression giving the plastic part of the strainrateis,

d?=d-d®=d-C:o ©)

where C is the elastic compliance tensor for the RVE. The elastic compliance tensor is
computed from the data obtained from the calculations on the RVE prior to the onset of
plasticity wherethetotal strain rate equalsthe elastic strain rate.

Each of the six calculations gives six equations for the 21 unknowns of C. In matrix
form, C iswritten as a vector of 21 unknowns,@is a6 x 21 matrix of the stress compo-
nents and d®isavector of the 6 prescribed strain rate components.

[o]{g ={a} ()

The key to the procedure liesin constructing the 6 x 21 ¢ matrix which contains alarge
number of zeros. The results of the six simulations are combined to produce a set of 36
equations for the 21 unknowns. C remains a vector of 21 unknowns, d® is a vector of 36
applied strains and ¢isa36 x 21 matrix.

A “least squares’ solution for this over determined system of equationsis obtained by
applying the singular val ued decomposition method to the ¢’matrix to obtain apseudo in-
verse. Thispseudo inverseisapplied directly to eg. (4) to determine the 21 components of
the C matrix.

With C known, it can be combined with the applied strain rate and stress rate calcula-
ted from the RVE to obtain the plastic strain rate from eqg. (3). Equation (1) can then placed
inaform similar to eq (4) and solved for the components of K employing the singular va-
lued decomposition method and the same procedure outlined above.

737



Warhead Mechanics

The K matrix determined from the crystal orientation datashownin Fig. 1isgiven by

0.525 . . . O
%—0.262 0543 . . symmetric g
(+0.263 -0.281 0.544 . |

K=pQ O ©)

0015 -0.005 0.020 0.490 . 0

0o.001 -0.005 0.004 0.011 0.485 g

E0.0lZ -0.023 0.011 0.008 0.014 0.502%

The nine entriesin the lower left of the matrix represent normal-shear coupling where
stress applied normal to one of the faces of the RVE will cause a shear deformation. If the
material were isotropic or orthotropic, these entries would be zero. If the texture had
stronger non-orthotropic components, these termswould be larger and the predicted rota-
tion greater.

RESULTS USING THE CALCULATED MATERIAL ANISOTROPY

To determine if material anisotropy could induce the spinning behavior seenin a spin
formed shaped charge, two sets of sample calculations were performed using the genera-
lized von Mises yield function described by egs. (1) and (2) with either isotropic proper-
ties or the K matrix given by eq. (5). The first example is of aring collapsing under app-
lied pressure. Thisis representative of theinitial deformation of the shaped charge liner.
The second example is the stretching of a hollow tube. This is reminiscent of the exten-
sion of theformed jet.

Thering for the collapse cal culation was 40 mm ID and 3 mm long with a0.3 mm wall
thickness. The faces of the ring were constrained such that the length of thering along its
axisremained fixed. Theinitial and final ring shapes are superimposed in Fig. 3a. Magni-
fied views of the deformed ring for the isotropic and anisotropic material properties are
given in Figs. 3b and 3c, respectively. It is noted that the calculation performed with the
anisotropic material properties produced a longitudinal spin whereas no such spin is
noted for theisotropic material.
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Anissiropic

Figure 3. lllustration of anisotropy induced twisting in acollapsing ring.

The stretching calculation started with a 40 mm 1D ring which was 50 mm long with
a1l mm wall thickness. The cylinders were stretched to approximately 10 times their in-
itial length. As with the collapsing ring, the stretching tube made of anisotropic material
(Fig. 4b) deformed with atwist while the cal culation using isotropic properties (Fig. 4a)
showed stretching without atwist.

ibp Anisoiropic

Figure 4: lllustration of anisotropy induced twisting in astretched cylinder.

CONCLUSIONS

Anisotropic material properties determined from the measured crystallographic tex-
ture of a copper shaped charge liner exhibit a normal-shear coupling which manifestsit-
self as a twisting deformation in simulations of a collapsing ring or a stretching rod.
Based on these results, it is anticipated that full 3-D simulations of a shaped charge using
these anisotropic propertieswill aso produce atwist. These results support the hypothesis
that the spin compensation of a spin formed shaped charge liner may be produced by the
changesin crystallographic texture induced during the spin forming operation.
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