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Penetration trials were conducted with shaped charges of a specific design. The
copper liners used in the high precision charges were within specification in
terms of roundness, but had known wall thickness variations in planes perpen-
dicular to the symmetry axis. The penetration results obtained with the charges
are compared with the predictions of a previously reported statistical model of
jet penetration, which was adapted to cater for the possibility of ajet which has
aradial deviation from the warhead symmetry axis due to a specific quantifi-
able warhead asymmetry. Theradial velocity of thejet, whichisused asan input
in the model, was deduced from orthogonal streak measurements, as well as
from numerical/analytical simulations.

INTRODUCTION

Theimportance of component symmetry for shaped charge warheadsiswell apprecia-
ted by those who have had prolonged exposurein thisfield. A survey of some of the histo-
rical experimental research and identification of the more important symmetry parame-
terswhich affect the penetrative performance of a shaped charge, can befoundin[1]. The
effect of wall thickness variation of the shaped charge liner on performance, in particular,
has been researced to various degrees[2,3,4]. It was, however, in the past quite difficult to
experimentally isolate the effect of a specific symmetry parameter on performance. This
was largely a consequence of aspects such asthe inherent quality of the explosive filling,
liner metallurgy and charge confinement. Recent advances in shaped charge technology
have improved the situation considerably.

The prediction of shaped charge penetration performance is a well researched field.
Most predictive models are of an analytical nature and agood overview of the earlier mod-
els can befound in [5]. Most models address a jet of which al the jet segments are initi-
ally aligned with the warhead symmetry axis, and then compensate for jet imperfections
by introducing parameters such as the “ cut-off velocity” [6]. This “cut-off” is associated
with the early collision of jet particles with the crater wall due to the radial “drift” of the
particles[6,7], adirect consequence of deviationsin component or detonation symmetry.
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A few penetration models directly account for the radial velocity of thejet [7,8,9,13]. Un-
derstandably, no models exist which account for additional disruptive phenomena (in-
creasing thejet drift or tumbling rate) occurring inside atarget. The mechanismsinside the
target which may add to the “radial drift” of the particles are complex and not easily quan-
tifiable. For thisreason a statistical model was formulated previously [10] that is based on
astochastic (normally distributed) radial velocity component to account for both inherent
small and random shaped charge asymmetries and/or in situ disturbances originating in-
sidethetarget.

In this paper the results of penetration tests of precision shaped charges, but with
liners of measured wall thickness variation, are reported. Furthermore, the statistical model
[10] is adapted to include both the stochastic radial velocity component aswell as an off-
set radial velocity component which is associated with aspecific bulk asymmetry.

EXPERIMENTAL

The liner of the shaped charge used in this study was of the variable-angle variable-
thickness type and explosive pressed plastic bonded explosive was used for the charge.
The charge diameter was greater than 100 mm and the jet tip velocity of the charge was
9.7 mm/us. The average scaled break-up time of thejet was greater than 2 us/mm.

The target in the test setup consisted of stacked (50 mm thick) EN24T steel (260-320
BHN) billets of 250 mm diameter. The stand-off was 3.5 caliber. The available liners had
arange of liner wall thickness variation which was approximately 0.4% to 7.5% of the
liner (apex) thickness. The wall thickness variation was not uniform throughout the liners
but it was consistent with the maximum variation at the liner apex and no variation at the
liner base. Only the maximum variation is quoted in this paper. A total of 17 firings was
conducted. All penetrations are normalised to the performance of the highest penetration
(attained with aliner with awall thickness variation of 0.4% of theliner thickness).
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Figure 1. Normalised penetration results.
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Theresultsare shownin Figure 1. Sinceit isafair assumption that the trend should be
exponential rather than linear, an exponentia curve was fitted through the experimental
pointsasaguide.

ESTIMATION OF THE RADIAL VELOCITY

The finite difference code Autodyn-2DTM was used to calculate velocities of the liner
elements with marginally different thicknesses at a fixed axial position. The numerical
velocity estimation enabled the calculation of momentum differences of symmetrically
collapsing mass elements of specific thickness, similar to [4]. The assumption of collapse
symmetry leadsto alower limit estimate of the particle radial velocity resulting from the
collision of elements of different momentum. Specific examples of the estimates of the
radial velocities of jet segments (particles) resulting from liner wall thickness variations
used in the present case study are shownin Table 1.

Table 1 : Estimated radial velocities

Wall Thickness Variation (%) Radial Velocity (m/s)
0.4 5
1 9
2 17
4 32
6 47
MODELLING

The basis of the statistical model [10] isthat the expected penetration is defined by the
relation:

X=3 Ply ®

where Pj is the probability that the segment (or particle) i will impact the bottom of the
crater, lj isthe length of the segment (or particle) when it reaches the bottom of the crater
and ythe square-root of the density ratio of the jet and the target. P; was previously [10]
calculated from assuming anormal distribution around a mean radial velocity and impos-
ing a standard deviation. This approach did not cater for the possibility, as in the present
case, of aradia velocity contribution from a deterministic effect, such as aknown asym-
metry, which isdivorced from theinherent statistical component.

In order to adapt the statistical model to includetheradial velocity contribution from a
known asymmetry, amore direct approach istaken in the cal culation of the probability P;.
Consider the impact of particle on acentroid impact point (Xp, Yo) asin Figure 2, such as
for a hypothetical jet ssgment moving through a cross section of the target. We assume a
bivariate normal distribution of the particles, but then impose symmetry around the aver-
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age impact point. The distribution is fully characterised by the standard deviation repre-
senting the inherent radial dispersioninthejet. Thejet crater is represented by acircle of
radius R (the smallest crater radius at thetime) at the origin caused by the previousjet ele-
ment. The distance from the origin to the impact point (X, yg) represents the radial drift
dueto aknown asymmetry.

) (XO !yO)

)
NI

Figure 2: Schematic representation of particles superimposed on the crater.

Since the distribution is assumed to be symmetric, the axis system can aways be rota-
ted such that yo=0. The dispersion of the particlesistherefore given by:

1~ Hle%)+yA)
B(xy)=_—e =’ @
2o
Transforming equation (2) to polar coordinatesyields:
#(r,6) = ﬁe—az[rz—ZXOrcosaﬂé] (3)
’ m
where
a= . 4
o2 4
The probability of finding aparticlein the circlewith radiusR isthen:
2nR o
P(r.0) = I J’ [2ea’lr® -2 0s6438]] 1 g g (5)
00

The integral in (5) is solvable analytically by means of the introduction of a Bessel-
function and a further series expansion [11], but it was preferred to compute the integral
numerically for each jet segment (particle). In the computation the radial velocity distri-
bution of each jet velocity segment is characterised by the input of its standard deviation,
whichisthen transformed to aradial standard deviation at timet. Similarly the off-set (xo)
iscalculated by using theradial velocity of the known asymmetry and thetimet.
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Figure 3. Model predictions compared with the experiment.

DISCUSSION

Radial jet velocities can be deduced from orthogonal synchro-streak (OSST) records
[12] or orthogonal flash-X-ray (FX) records of the jet [4]. In these experiments the radial
displacement of the particles relative to some datum line is measured in two directions.
Typical vauesthat are given for shaped charges of various degrees of precision vary be-
tween 0 and 100 m/s[4,6,9]. However, estimates from local experiments (in air) with high
precision chargesyield values less than 30 m/s and Chi [13] uses amaximum of 40 m/sto
model the penetration of a65 mm diameter precision shaped charge.

In Figure 3 the model predictions with the adapted statistical model are compared to
the experimental points (exponential fit) defined in Figure 1. The radial velocity data sets
used inthe predictionsare givenin Tables2 and 3.

Table 2: Radial velocity distribution

Data Set 1 Data Set 2 Data Set 3
Jet Velocity Std. Dev. Jet Velocity Std. Dev. Jet Velocity Std. Dev.
(mm/ps) (ml/s) (mm/ps) (m/s) (mm/ps) (ml/s)
9-8 5 9-8 15 9-8 15
7-5 10 7-5 15 7-5 15
5-4 15 5-4 15 5-4 15
4-3 20 4-3 15 4-3 15
3-2 25 3-2 15 3-2 15
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Table 3: Offset radial velocities
Data Set 1 Data Set 2 Data Set 3

Thickness Offset Thickness Offset Thickness Offset
Variation (m/s) Variation (m/s) Variation (m/s)

0.4% 5 0.4% 5 0.4% 5

1% 9 1% 9 1% 14

2% 17 2% 17 2% 25

4% 32 4% 32 4% 48

6% 47 6% 47 6 % 70

The radia velocity distribution data in the first data set used in Figure 3 was pre-
vioudly found to predict the stand-off behavior of two different shaped charge warheads
reasonably well [10]. The difference here is that the values represent the standard devia-
tion and not the mean of the normal distribution. In Data Sets 2 and 3 the standard devia-
tion of the distribution was kept constant throughout the jet. Theradial velocity off-set va-
lues were obtained from Table 1 except for Data Set 3 where the values were increased by
50% to compensate for the fact that these were lower limit values.

Figure 3 showsthat good correlation is obtained with the adapted statistical model and
the trend in the experimental results. The predictions with Data Set 1 and 2 are some-
what higher than the exponential fit, but this could also be due to the lower limit esti-
mates of the offset radial velocity and the possibility that increased tumbling of particles
or disturbances inside the crater may occur with jets which have an offset radial velocity
from a deterministic asymmetry. A major improvement in the statistical model is the spe-
cification of asingle parameter for the stochastic radial velocity distribution. The extreme
sensitivity of the model (in the absence of aradial velocity offset) to the two-parameter
inputs observed previously [10] has been alleviated.

CONCLUSION

The penetration performance of a shaped charge with liners with varying wall thick-
ness variation was characterised experimentally at afixed stand-off. The output of the sta-
tistical model which was adapted to include both the radial velocity distribution typical of
the shaped charge, as well as a known radial velocity offset (from an asymmetry) corre-
lated acceptably with the experimental values.
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