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A charge resulting in an Explosively-Forged Projectile in the shape of a short
thin-walled pipe was designed using a finite difference code. The liner (OFHC
copper) was in the form of a contoured washer with variation in thickness. The
outer rim was designed to have a forward inclination and to be significantly
thinner than the inner rim, with the result that the outer rim folded forward and
downward ahead of the inner rim. The charges were manufactured, and tests
proved that their performance was satisfactory, with little reduction in penetra-
tion up to 90 calibers stand-off. The final shape of the EFP approximated that of
an annulus with the diameter of theinner rim of theliner. Itslength was about a
1/3rd of its diameter.

INTRODUCTION

Some warheads are not sufficiently robust to withstand the shock of an encounter with
athin outer wall of atarget, and would benefit if alarge enough hole had been punched
out of the wall by a precursor charge prior to impact by the main warhead. Ways to
achieve this were investigated in a technology exercise by designing and testing a sub-
scaled cutting charge that produces a copper projectile in the form of an annulus. A simi-
lar charge has been described by [1], where its use as a safe demolition charge was stu-
died.

The work by [1] was repeated as a first step. In this, the finite difference code Auto-
dyn™ was used to design a charge that would result in the deformation of a copper liner
to acup shape with the rim of theliner folding in behind the central portion. The evolution
of theliner isdepicted in Fig 1. Charges were manufactured to this design and tested. The
scaled results were on par with those obtained by [1]. A flash X-ray image of the de-
formed liner at a late stage isincluded in Fig 1. As can be gauged from the figure, this
charge will have a satisfactory performance over only asmall standoff range (in this case
in the region of 8 cm) due to the divergence of the nose of the cup and the convergence of
therear towardsthe axis.
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Figure 1: Theliner profileat 10, 20, 30, 40 and 60 ps (the lowest two rows of cells having
been removed at about 35 ps), and an FX image at 125 ps.

Thisdivergenceis of little consequence for usein ordnance disposal,
but is decidedly undesirable against targets with random orientations.
The effect of the sensitivity to stand-off isamply illustrated by the adja-
cent photograph, where an inclined (60°) steel plate was perforated at
the design standoff, but with failure to perforate the upper part of thetar-
get dueto theincreased standoff.

As an exercise to achieve a performance that would be less dependent on standoff,
Autodyn™ was used in the design of a charge that would result in an annular EFP. The
charge had an annular explosive and aliner with ahemispherical section, asin Fig. 2, with
the X-axis an axis of revolution. The simulations revealed that the initial acceleration of
the liner is symmetric, with implosion asymmetries only starting to develop once the de-
tonation products have reached the axis. Thereafter, the increased pressures near the axis
causetheinner part of theliner to have alarger acceleration.
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Figure2: The liner profiles at 6, 10, 15 and 20 s for symmetric (left) and asymmetric
(right) liners.

At later times an additional asymmetry is seen to develop, in that the lower half beco-
mes thinner while the top half apparently retainsit thickness near the collapse region. The
lower tail reduces in thickness as it moves towards the slug, since it is expanding away
from the axis. It merges with the slug ahead of the upper tail. Thisis caused by the larger
initial acceleration of the lower tail due to its smaller mass and the high on-axis detona-
tion product pressure. This asymmetry causes the front end of the slug to have an upward
velocity component.

750



The Design and Performance of Annular EFP’s

At later times, the implosion is somewhat more symmetrical, but, since the mass of
material imploding from aboveis so much larger than that from below, the rear of the slug
has a downward velocity component. This will cause the slug to rotate to such an extent
that the tails will be shorn off at later times, with the slug then tending to behave like a
smoke ring. The effects of this asymmetry can be significantly decreased by introducing
an asymmetry in the thickness profile of the liner, theinner section being thicker than the
outer section, as also employed by [2] for a straightsided annular liner configuration
where jetting was required. It isthen also easier to attain alarge length for the body of the
slug, asisobservablein Fig. 2.

THE PRESENT APPROACH

The secondary symmetry associated with the implosion axisin Fig. 2 is only neces-
sary if one wantsto achievejetting. It can be dispensed with for annular EFP's, easing the
task of the designer. The only inherent asymmetry then residesin the detonation products,
where the pressure remains appreciably higher near the axis. The section of the liner
nearest the axiswill thus be influenced by the detonation productsfor alonger time.

The main problem with the cookie cutter design [1] isthat the liner’s central half isin-
capable of ‘freezing’ at any diameter, since the outward-directed velocity component cau-
ses athinning of the section asit expands (Fig. 1). One can now take the approach to dis-
pensewith that part of the charge that forms the expanding nose of the projectile.

A good approach would be to have a forward-folding liner, the liner being thin near
the outer edge to implode at a higher speed, and followed at progressively lower speeds
and angles by liner elements at smaller radii, until one would have quite athick liner at the
inner edge making up the rear the ring. For such a projectile, the elements from the liner
outer edge have to be faster and more downward-directed than sections closer to the axis.
Thiswas achieved by curving theliner forward and introducing a progressive thinning to-
wards the rim. Attempts to achieve adesign using a curved liner with a constant horizon-
tal thickness to ease manufacture were not successful. The projectile evolution of Fig. 3
was the result of a large number of runs with different liner configurations, aimed at
achieving a projectile with a diameter of about 25 mm and a reasonable length and wall
thickness. The simulation predicted that the projectile would freeze at about 80 us, with a
speed of 1,55 km/sand alength of 15 mm.
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Figure 3: Projectile shape at 0, 20, 40, 60, 80 and 100 ps after initiation. A section view of
the charge as simulated is al so sketched, the dashed line again being an axis of revolution.
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THE RESULTS

The design for manufacture had to contend with the need for the relay of detonation to
thelower edge of the main charge, which was machined from PBX bar stock. To thisend,
the configuration of Fig. 4 was used. A plastic explosive (PE4) was used as arelay charge
within a steel housing with adiameter of 45 mm. A steel cup wasinserted into the annulus
to effect good contact between the PE4 and the main charge and to enforce axial symme-
try. It was hoped that arelay thicknessin the region of 1 mm would suffice. However, it
was found that this thickness had to be increased to nearly 3 mm to ensure reliable corner
turning in the PE4 on the axis. This increased thickness had an effect on the ultimate EFP
shape —in Fig. 4 the radiographs of two EFP’'s taken at 100 s after initiation are compa-
red. Therelay web thickness of the charge on theleft was at the minimum 3 mm, achieved
by forcing the cup in to a greater depth, while in the other radiograph the web thickness
was 5 mm. With athinner relay the manufactured item (and the observed EFP shape) is
much closer to the required annular shape (Fig 3), since the inner rim of the liner will be
relatively slower than the outer rim.

—>

Relay thickness
Detonator \€ Cup
Figure 4: Design, and radiographs at 100 pus 3mmrelay 5Smmrelay.

Penetration as a Function of Stand-off Distance

A number of chargeswerefired at thick mild steel targets at arange of stand-offsupto
4 m (90 calibers) from the charges. The hole profiles at stand-offs between 2 and 20 cali-
bers were generally symmetrical and similar to the profile of Fig. 5(a), with maximum
depths ranging between 11 and 14 mm, and some evidence of tumbling at the larger
stand-offs. Of the four charges fired at a stand-off of 90 calibers, one of the impacts
showed evidence of large tumble, in one the EFP had clearly suffered break-up into two
fragments, while the remaining two had good integral in-line impacts. The hole profile of
Fig. 5(a) depictsthe best of these, the other one being quite similar.
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Figure5(a): Hole profileat 90 calibers 5(b): Example of plugging
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It is gratifying to note the good penetration potential at such a large stand-off. The
charge could a so punch out plugs from two 3,2 mm mild steel platesinclined at 60° to the
charge axis at a stand-off of 5 calibers, as can be seenin Fig. 5(b). The tumble observable
at large stand-offs could have been caused by non-precision of assembly and/or aerodyna-
micforces.

The charge does not perform well against multiple spaced plates — the EFP shatters
upon impact with thefirst plate.

The Evolution of the Projectile

The projectile evolution was determined with flash X-rays. Fig. 6 is a collage of the
predictions and the FX results for three shots where the timing made direct comparison
with the predi ctions possible. Radiographs at other times are also shown.

The agreement between predicted and measured shape is quite good, except for aflar-
ing out of the forward portion. Thisflaring may at least partially be ascribed to the relati-
vely largerelay thickness (Fig. 4). Freezing apparently took place between 60 and 100 s,
in line with the prediction. The length of the ring is satisfactory, and there are indications
from the serrated front edge of the ring and from FX photographs taken soon after initia-
tion that the outer rim of the liner had spalled off early on. Such spalling could be reduced
significantly by using heavier confinement, but heavier confinement would have made
the observation of the evolution of the projectile more difficult. The measured projectile
velocitieswere al within 200 m/sfrom the predicted value, with ameasuring error of per-
haps 100 m/s.
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Figure 6: Collage of predictionsat 0, 20, 40, 60, 80 and 100 ps after initiation, and results
at theindicated times.
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Since the amount of deformation experienced by the liner is actually quite small in
comparison with that of anormal EFP, one could get by with an unsophisticated strength
model for theliner. An ordinary von Mises model was used.

In the present design the aim was to achieve an annulus with the diameter of theinner
edge of theliner. An annular EFP with a diameter equal to the diameter of the outer edge
of the liner would not result in a stable EFP, as a result of the radially-outward velocity
component. The performance of such acharge will again be quite stand-off dependent.
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