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THE CONTRIBUTION TO THE OPTIMIZATION
OF DETONATION WAVE IN THE SHAPED CHARGE
CONSTRUCTION

M. Ugrciét

1 Military Technical Institute of YA, Kataniceva 15, 11000 Belgrade, Yugoslavia

The procedure of the theoretical optimization of the detonation wave profilein
the shaped charge with conical metallic liner is shown as well as some results
of experimental research on the possibility to realize practically a detonation
wave of such characteristics. The calculation method of the optimum detona-
tion wave profile at constant values of others construction parameters of the
shaped charge is based on the criterion of the regular jet formation and maxi-
mum jet kinetic energy. To reach the highest jet penetrability, these criteria are
enlarged with complementary conditions concerning the gradient of the jet ve-
locity.

INTRODUCTION

In the shaped charge without a wave shaper the detonation wave profileisapriori de-
termined and it cannot be changed. In this case a maximum performance of a shaped
charge construction can be realized by the optimization of the form and the thickness of
metallic liner. Meanwhile, for the shaped charge of the small and medium caliber in parti-
cular, the task of optimization of a detonation wave profile is stated more frequently. In
practice, the problem isresolved by introducing a special-form wave shaper in the shaped
charge.

THEORETICAL OPTIMIZATION OF THE DETONATION WAVE
PROFILE

At the constant values of the construction parameters of the shaped charge with coni-
cal metallic liner only the variation of the wave shape is possible. But, only one possibi-
lity of al form variations will have the optimal detonation wave profile at each moment,
which is a necessary and a sufficient condition to produce the jet of claimed character-
istics.
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In other words, by initiating the detonation wave of an optimum form and its evolu-
tion along the shaped charge, in each point of the path line of the metallic liner, the most
favorable conditions of the transfer energy from gaseous detonation products to liner will
be achieved, providing the maximum jet performances.

Equations system

The phase of the metallic liner collapse (Fig. 1) and the phase of the collapsing mass
collision and jet-slug formation (Fig. 2) have a primordial influence on the distribution of
the shaped charge energy, and consequently on the jet parameters.
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Figure 1 — Genera case of the no stationary Figure 2 — Collapsing mass collision and
liner collapse. jet-slug formation.

For the mathematical description of the phases given above, the analytical model of a
two-dimensional metallic liner collapse for the general no stationary case and the equa-
tions of the hydrodynamic theory of jet-slug formation are used. Only the basic well-
known equations of the Munroe's effect [ 1-4] are given in the paper.

Theliner collapseangle ¢ iscalculated on the basis of the Richter’s equation:
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where: ¢g — is the free expansion angle of the gaseous detonation products, p — metallic
liner density, € —metallic liner thickness, e — explosive charge thickness, K — coefficient
depending on the explosive type and the attack angle of the detonation wave A.

Thecollapsevelocity Viscalculated by Taylor’s equation:
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Velocity, mass and kinetic energy of the formed jet element are given by the equa-

tions:
V; = D,|1-cos¢ +sin¢oot% 3)
Am; = %Am@—oosﬁ):AmsinZ% (4)
NE, =Z0mV? = A, ooszg ©)

This equations system with the optimization criteria is used for the determination of
the optimum attack angle of the detonation wave.

Optimization criteria

The basic, starting criterion to reach the highest jet penetrability consists of the requi-
rement for the maximum kinetic energy of the collapsed liner, i.e. of thejet.

The analysis of theinfluence of the detonation wave shape on the kinetic energy of the
collapsed liner [5-7] shows that it is necessary in the shaped charge to generate the deto-
nation wave of which profileisinclined, as much as possible, to the path line of the metal -
lic liner cone. On the other side, by the inclination of the detonation wave, i.e. by decreas-
ing the attack angle A, the realised increasing of the liner collapse velocity leads to the
critical conditions (Vs> c) where in the phase of the liner mass collision thejet existanceis
endangered. The mentioned criterion must be thus enlarged with a complementary condi-
tion concerning the existency of the coherent jet regular formation: Ve</c (M=1.23).

If these two criteria are satisfied in the optimization of the detonation wave profile
thejet will be having the maximum velocity, i.e. kinetic energy. However, in some shaped
charge constructions, particularly in the shaped charge with conical metallic liner where
the liner thickness decreases from the top to the end of the basis of the cone, the jet of
these characteristics will not have the maximum penetrability. This phenomenon is
caused by a high value of the end part of the jet (VjN >>Vjmin 02300 mV/s), by which the
needed jet elongation at the given standoff distanceisnot possible.

To complete the method of the detonation wave optimization, the mentioned criteria
must be enlarged with the following requirements:

— thevelocity of the end part of the jet must be equal to the minimum jet velocity for pe-
netration VjN = Vjmin =2321 m/s,

— thetop of the jet for the given parameters of the shaped charge must have the maxi-
mum velocity Vj(1) =Vjo =(Vjo)max, Which isin accordance with the basic criterion of
the optimization, and

— thechange of the jet velocity must be monotonous and decreasing (inverse gradient of
the jet velocity) observing from the top to the end part of the jet, so that the first ele-
ment hasthe velocity Vj(1) =Vjo =(Vjo)max, and thelast VjN =Vjmin =2321 m/s.
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NUMERICAL RESOLVING OF THE OPTIMIZATION TASK

Numerical resolving of the optimization problem of the detonation wave profile be-
longsto theinversetasks of the detonicsand is carried out in two phases. In thefirst phase
the calculation of the optimum values of the detonation wave attack angle is performed
for thelocal collapse conditions, and in the second the cal culation of the inverse evolution
of the detonation wave which in each point of the path line of the metallic liner cone satis-
fiesthiscondition.

Determination of the optimum value of the detonation wave attack angle

In the preliminary analysis the general definition of the detonation wave optimum
profile is given, which means that the detonation wave in each point of the cone path line
hasthe optimumvalue A = Agp; = A*.

The angle A* is calculated using the system equations (1)—(5) beginning from the given
jet element velocity and the local collapse conditions in the relevant point on the path line
of the metallic liner cone. The calculation is carried out by a numerical iteration, introdu-
cing inthefirst approximation, the supposition of the frontal motion of the plane detonation
wavefor determining theinitial value of the multi-factorial expression ps/fefromeqg. (1).

Inverse evolution of the detonation wave

In order to discribe mathematically the inverse evolution of the optimized profile de-
tonation wave a discretization of the timet as independent variable is being performed,
supposing that in finite time intervals the kinematic (D, Dg,DZ) and geometric (A*) cha-
racteristcs of the detonation wave change lineary. Thus, determining the optimum value
of the attack angle A*(j) in each point of the metallic liner cone path linej (j=1,2,3,...,M)
for the actual negative time increment -At, it can be possible to determine in a particular
moment -t(i) the detonation wave profile of the optimum form given by the coordinates
[x(i.)); y(i,)], according to the schemein Fig 3.
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Figure 3—Pointsdeterminationflow  Figure 4 — Scheme of the change of thefinite
on the detonation wave profile. element of the detonation wave optimized profile.
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Theinverse evolution of the detonation wave optimized profile, schematically shown
in Fig. 4, during the movement from the point (i-1,j) with aknown value of the attack an-
gle A*(i-1,)) tothe point (i,j), at y(j)=const., isdefined by the system equations:

x(, )= xG -1 j)+axg, §) (6)
A0 D)=A70-1 )+ 476, 1) (7)
Thefiniteincrements Ax(i,j) and AA*(i,j) are given by the following equations:
A __  Dcosa
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where:
§6.0)=2°0)+a :  &(-1)=2(-1))+a (10)
54, 1)=50 -1 1)+ [ax(, i)-ax, i -1 (1)
5(-1j)=x(-1j-1)-x(-17}) (12)

RESULTS OF THE CALCULATION AND EXPERIMENTAL
RESEARCH

Thetheoretical and experimental research on the optimization of the detonation wave
profile is realized for the model of the medium caliber shaped charge. The construction
and physical characteristics of the shaped charge model with conical metallic liner are
shown in Fig. 5. Fig. 6 shows the calculated optimum profile and the realized profiles of
the detonation wave in the experimental models of the shaped charge at the arrival mo-
ment to the metallic liner top. Making efforts to generate the detonation wave profile as
closer as possible to the optimum profile, the several types of the wave shaper were tested
[5-7], where the shape, dimensions, and kind of used material are varied. The results of
the comparative research of the detonation wave form in the shaped charge with a specia
hemispherical wave shaper are given in the paper (Fig. 7).
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(D=8250ms, p=1750kg/m’) —
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Figure 5— Cross section of the shaped Figure 6 —Optimized and rea profilesof DW
charge experimental model. a thearrival moment to themetalic liner top.
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Figure 7 — Results of the experimental research of the detonation wave profile in the

shaped charge.
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The recording realized by a high-speed camerain streak techniques[8,9] at recording
speed V,=10 mm/us using the glass mask with engraved cross-shaped slots, and the pro-
cessing of theresultsis realized by the theoretical and experimental method for the deter-
mination of detonation wave parameters, givenin[9].

CONCLUSION

The explained method, with some suppositions, gives the possibility for theoretical
optimization of the detonation wave profile in the shaped charge with conical metallic li-
ner. The comparative analysis of the results of the experimental research (Fig. 6 and
Fig. 7) showsthat the active hemispherical wave shaper, which has aplane Mach wavein
the central zone as a result, generates a detonation wave profile closest to the optimum
theoretical profile.

The profile correction on the peripheral part of the detonation wave can berealized by
two-component explosive charge (generator of the conical detonation wave), in which the
central and peripheral charges of different detonation velocities are connected by area of
strictly determined form.
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