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VARIATIONAL PRINCIPLE FOR SHAPED CHARGE JET
FORMATION

J.P. Curtis!

1 DERA Fort Halstead, Sevenoaks, Kent TN14 7BP, UK

A new variationa principle for the classical unsolved problem of impinging un-
equal streams in potential flow is derived for planar flow. A coupled pair of
boundary-value problems defined in two flow regions is recovered as the ne-
cessary conditions resulting from making stationary a functional associated
with the potential energy of the whole flow field. In each region Laplace's
equation emerges as the Euler equation, and the derived natural boundary con-
ditions correspond to the appropriate physical boundary conditions on the free
surfaces and at the interface between the regions. The application of this result
to asymmetric shaped charge jet formation is then discussed. The conservation
equations and the optimality conditions for minimum potential energy appear
to provide the equations necessary to close the problem.

INTRODUCTION

For most of this century the problem of impinging unequal streamsin steady flow has
been of interest to workersin fluid dynamics [1-4]. Over the last few decades this prob-
lem has become highly relevant in considering asymmetries in the shaped charge jet for-
mation process. The presence of asymmetry brings about the lateral drift of the shaped
charge jet particles, causing them to collide on the crater side wall rather than to contri-
bute to the penetration at the bottom of the crater.

Traditionally the problem has been investigated for the case where the densities and
speeds (relative to the stagnation point) of the streamsare equal, but the widths of the stre-
ams differ. There is a solution for non-parallel streams in planar flow in this case. How-
ever, in the study of asymmetric jet formation the assumption of equal speeds relative to
the stagnation point where the jet is formed is incorrect. Heider and Rottenkolber [5]
sought to overcome this problem by choice of frame and achieved a closed form solution,
but the agreement with experimental datawas not good. The author and co-workers [6-9]
have investigated three models with improving, but still not entirely satisfactory, results.
In al of these formulations the fundamental difficulty is that there are insufficient equa-
tions to solve for all the unknowns. In each case plausible but non-rigorous methods of
closing the problem have been attempted by making assumptions about the nature of the
flow-field.
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For example, the condition that the outgoing jets lie in a straight line was taken as a
hypothesis by Pack and Curtis[5] and used in conjunction with the equation of conserva-
tion of energy and Bernoulli’s law applied to the outgoing jet and slug to close the prob-
lem. Infact Curtisand Kelly [6] later showed that the straight-line hypothesis can only be
sensibly applied up to a limit that is a function of the incoming stream parameters. The
same authors [ 7] later investigated a formation model based on the concept of a stagnant
core around which the fluid movesin circular arcs. The treatment of the flow in the vicin-
ity of the core was approximate. Nonetheless this model exhibited increasingly good
agreement with the results of Kinelovskii and Sokolov (loc.cit.) as the angle between the
impinging streams grew, coinciding for a head-on collision. Similarly the predictions of
the off-axis velocities of shaped charge jets improved with increasing collapse angle. A
feature of the model was that the outgoing (generally non-parallel) jets consisted of two
adjacent parallel streams, each travelling at the speed of the incoming stream from which
it originated. A benefit of this approach is that the free surface conditions are automati-
caly satisfied.

More recently Curtis [9] considered a simplified model in which this feature was re-
tained, but the assumption of the stagnant core was not made. He further assumed that the
mean outgoing jet speedswere equal and that the outgoing jetstravel in directions closeto
thenominal axisof symmetry. Thisset of assumptionsresulted in an analytical model that
was in better agreement with the experimental data from shaped charges than the earlier
models. The model recovered the known special cases correctly and showed that the thin-
ner jet isdeflected more than the thicker one—an intuitively pleasing result. However, the
agreement with experiment was still not fully satisfactory.

It was desired to improve on this position. Accordingly in this paper a different ap-
proach has been adopted in which the underlying physics of the flow isinvestigated theo-
retically in the hope that this can be used to find more rigorous models. It was decided to
investigatefirst the associated problem of potential flow, in which the flow isdivided into
two regions, each region including one of the incoming jets and one of the streamsin each
of the outgoing jets. A coupled pair of boundary-value problems was formulated and the
question of whether a governing variational principle existed was posed. If a minimum
energy principle existed, this could explain the existence of the stable solutions observed
by Kinelovskii and Sokolov (loc. cit.). The concept of aminimum energy principle had in
fact previously been explored by Curtis et al [10] for an approximate flow field with cir-
cular streamlines. By contrast, here we consider the true free boundary-value problem,
neither constraining the shapes of the free boundaries, nor restricting the treatment to the
symmetric case. It is demonstrated that the governing coupled boundary value problem is
recovered as the set of necessary conditions for a functional associated with the potential
energy to be made stationary. The application of this result to asymmetric shaped charge
jet formation is then discussed. It is shown that, in principle, the equations necessary to
closethe problem emerge naturally as stationary conditions.
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BOUNDARY-VALUE PROBLEM

The flow field produced when two streams of incompressible inviscid fluids having
unequal speeds, widths and densities meet is investigated. Far from the region of impin-
gement the incoming streams are of speeds U1, Uy, widths A1, Ay, and densities p1, po,
respectively. Each stream is divided into two parts, one turning into the jet and one into
the slug. The widths of the portions of thefirst stream turning into the jet and slug are de-
noted by A1 3, Arsrespectively. Analogous variables Ayj, Aos are defined for the other in-
coming jet. These widths and the associated jet speeds are preserved in the corresponding
outgoing streams because there is no dissipation or compression.

Figure 1 shows the geometrical configuration and the mathematical boundary-value
problem in the case where P1U12 > p2U22. Curtis [9] gives an argument for the interface
JCL between the two regions of fluid in the domains D1 and D5 respectively containing a
cusp C at the point where the stronger incoming first stream is parted by the weaker se-
cond. This cusp isastagnation point for the flow in the region D». The streamlines CJand
CL are contact discontinuities on which the normal components of the velocities u; and
up in D1 and D» respectively vanish and the pressure fields p; and po are equal. On the
outer free surfaces the pressures and normal components of the velocities are zero. Far from
the formation region the incoming and outgoing widths and speeds of each component
stream arethe same.

In the next section avariational principle equivalent to this boundary-value problemis
derived.

VARIATIONAL PRINCIPLE
Consider thefunctional defined over theregion D1 J Do shownin Figure 1 by

I [q’la(pz; D11D2] = J-%pl(ulz - D(pl-D(pl) dA+ J%pz(uzz - D%-D(pz) dA, N
Dy

D,
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Figure 1. The potential flow field describing the two impinging streams consists of two
regions D1 and D». The upper first incoming stream is the stronger of the two, having a
higher Bernoulli constant. The cusp point C is a stagnation point for the flow in Dy. The
streamlines CJand CL are contact discontinuities on which the normal components of the
velocity fieldsin each region vanish and the pressuresin each region are equal .

where ¢ and ¢ are twice differentiable functionsin the spatial co-ordinates x;, and dAis
an element of area. Let ¢ and ¢ satisfy the asymptotic boundary conditions

(pj_.+n],x,U],J:L2asr=|§|_.oo. (2)
Here the positive and negative signs hold on the outgoing and incoming streams re-
spectively, and the summation convention appliesto i only. The outward normals nj from
D1 and Dy aretaken perpendlcular to the boundary streamlines.
We seek pairs of functions qf ), j =1, 2 and domains DJ(O) that make stationary the
functional | given by Eq. 1. We consider first-order variations about these functions and
domains by writing:

®, :q,j(O) +ep®, 41,2, X; = X(0)+gf Ny j=1,2 ©)
where g <1, the co-ordinates xj; define the boundaries of the domains Dj, j = 1, 2, and the
functionsfj, j = 1, 2 are continuous functions of the co-ordinates xl(lo), XZI( 0) defini ng the

boundaries dD{ Q) aoé 9 of the domains D ), éo) respectively, as are the normals. The
corresponding f| rst-order variationin| |sthen readi ly calculated as:
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where ds; is an element of arc length along the boundary to D(O) In deriving Eq. (4) the
Divergence Theorem has been applied in both D1 and D». At the stationary solution the
right-hand side of Eg. (4) must vanish for all weak variations (4( &) fj,j =1,2. Considera-
tion of thefirst term on the right-hand side of Eq. (4) and standard arguments of the calcu-
lus of variationsyield the Euler equations:

0%g°= 0, = 12 )

holding in D 1(0) and D, © respectively. We therefore recover the equations of potential
flow in each region as necessary conditionsfor the stationary solution.

The boundaries 6D1( 9, aD4P) comprise the free surfaces, the interface between the re-
gions, and the cross-sections at infinity. Consider the second term on the right-hand side
of Eq. (4). On the cross-sections at infinity the integrands vanish as a result of the boun-
dary conditions (2). On the free-surfaces, the arbitrariness of the functionsf;, j = 1, 2 gives
the necessary conditions:

Ul—De.0p” =0, j=1,2. (6)

Thisisfamiliar asthe pair of conditions that the speeds on the free streamlines remain
constant. On the interface it follows from Eq. (3) that f» = —f1. The arbitrariness of these
functions subject to this constraint yiel ds the necessary condition

3o U7 -0¢”.0¢°) =4 p,(U;-0¢” 0¢”) (7)

In potential flow this condition represents the balance of pressure at the interface be-
tween the flows. Finally, consider the third term on the right-hand side of Eq. (4). The arbi-
trariness of the variations qf Dj j =1,2 on the free surfaces and on the interface between the
regions implies the necessary natural boundary conditions that the velocity components
normal to the free streamlines and to the interface between the regions D41 and D vanish.
Thus one of

Dl-D(pim: 0, DZD (49 0 (8)

holds on each free surface as appropriate, while both conditions apply on the interface
between the regions. The Dirichlet boundary conditions (2) enforce the vanishing of the
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contribution to the third integral in Eq. (4) from the cross-sections at infinity asaresult of
thevariations (;fl), j =1,2, being zero there.

We have recovered a pair of coupled boundary value problems describing potential
flows with free surfaces in each material. The boundary conditions on the interface be-
tween the materials couple the problems. Egs. (5) are to be solved subject to the free sur-
face conditions (6), boundary conditions (2), and interface conditions (7) and (8). When
the functional (1) is evaluated for the solution of the above coupled boundary-value pro-
blem, it represents the potential energy associated with the entire flow field. It appears
likely that the potential flow solution derived in the preceding section minimises this
functional. Note that any functions ¢; and ¢ satisfying the boundary conditions and any
suitable domains D1 and Do may be used to furnish approximations to the stationary va-
lue of the functional. The choices of the domains D 1(0), Déo) aswell asthe functions (pl(o),
qéo), are determined by the variationa principle. In other words, the directions of the out-
going streams are determined by the variational principle. It appears likely that this solu-
tion is favoured by nature, as evidenced by the work of Kinelovskii and Sokolov (loc.
cit.). By skilful choice of the functions ¢ and ¢ and trial domains D1 and D expressed
in terms of alimited number of variable parameters, it may be possible to make accurate
estimates of the solution by minimising the functional (1) interms of those parameters.

APPLICATION TO SHAPED CHARGE JET FORMATION

In the problem of shaped charge jet formation the incoming streams represent the col-
lapsing liner material arriving at the axis of the jet, in a frame moving with the point of
formation — the so-called stagnation point. Let the directions of these incoming streams
be denoted by 61 and 6. L et the directionsin which the outgoing jet and slug travel be de-
noted by the unknowns 63 and 6, respectively. The speeds U4, Uo, and the widths Ag, Ao,
areknown, but the divisions A1 3, Aisand Aoj, Aogare not known. The mass conservation
equationsare:

A, tAs=A, AstAg=A. 9)

These equations allow the elimination of A1s, A1s We now conjecture that the func-
tional | is expressible as a straightforward function of the unknown parameters A3, A3,
63, 64 and the known parameters describing the flow. Thus

I[®., ¢:;D,;,D,] =9(A; A, 8, 6:A,AULU,, § 8), (10)

where the function g is assumed to be smoothly differentiable in the unknown argu-
ments. The hypothesised minimisation associated with the variational principle then
yieldsfour equationsin the four unknowns, namely:

09 — 09 — 09 — o0y —
A =0 =0, 5 =0, 5 =0. (12)
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These equations are to be solved simultaneously for the directions 63, 64, and widths
A13, A of the outgoing streams in the jet. Provided that the four equations are indeed in-
dependent then the problem is closed and the solution exists. To demonstrate this conclu-
sively it will be necessary to establish the exact form of the function g corresponding to
the coupled boundary-value problem derived in the preceding section. The unknown ar-
guments of g in Equation (10) above could provide the variable parameters needed to ge-
nerate approximate solutions, as discussed above.

CONCLUSIONS

A variationa principle equivalent to the coupled boundary-value problem describing
the meeting of unequal streams in steady flow has been derived and applied to the pro-
blem of shaped chargejet formation. It has been conjectured that the solution corresponds
to a minimum of the potential energy. Assuming that the energy functional may be ex-
pressed in terms of the parameters describing the flow field at the shaped charge jet for-
mation zone, it has been demonstrated that a set of four equations in the four variables
describing the outgoing streams results. If a solution of this set exists then the problem is
fully determined. This is in significant contrast to previous models, where various as-
sumptions have been required to achieve closure. It remains to specify the exact form of
the potential energy function, or, alternatively, to investigate approximate solutions by ex-
ploitation of the underlying variational principle.
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