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INTRODUCTION

Equation 1 [1] states that the break-up time, tB, of the shaped charge jet is equal to the
initial diameter of the elongating jet din divided by the average velocity difference, Vpl,
between neighboring segments that the jet breaks into:

(1)

This formula was found in 1979, using a computer code based on the very simplified
P.E.R. model [7]. It was then reconfirmed in 1984 in a series of experiments where great
care was taken in the analysis to avoid errors that might rise by the use of this model and
errors stemming from simplifying assumptions made in the code [8]. Still applications
were later found where it was necessary to vary the value of the Vpl parameter in order to
fit new data obtained in experiments where exotic liners were used, especially when the
liner thickness was not constant [9]. 

SCAN, a semi-analytical code for analyzing shaped charges [2–4], takes into
consideration the fact that when the liner of a cylindrically symmetric shaped
charge collapses, its thickness profile becomes wedge like (Fig. 1). This pheno-
menon very significantly influences the formed jet parameters. (The effect is
calculated in the Brigs code as well [18]) The break-up time, (Eq. (1)), as used
in the SCAN code, shows a very good agreement to experimental data. In [5]
by increasing the liner thickness TL the Vpl parameter is found to increase. In
this paper, we propose an interpretation for the jet break-up time formula using
the Strength Failure Surface (SFS) model [6]. Shear bands are formed in the
liner material at the SFS when it enters the collision region, in a process that is
described in some detail. They are called the primary set of shear bands. The
dependence of Vpl on the liner thickness is shown to relate to the elastic defor-
mation that prevails upon these shear-bands’ formation. A secondary set of
shear bands is formed when the jet just begins to elongate. The lengths of these
secondary shear bands sum up to the initial jet diameter times prior to the
final jet break-up stage, which explains Eq. 1. 
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In a recently reported series of experiments [5] the Vpl value and the accumulated
length were measured for the same shaped charge design, using liners made of identical
copper material but in five different thickness values. The results are quoted in Table 1. 

Figure 1: Profile of the collapsing 0.6 mm liner when explosion wave front arrives at the
liner base.

When compared to the SCAN code using the Vpl measured values the calculated ac-
cumulated length of the jets were reproduced with an excellent agreement. The cases of
the most commonly used liner thickness (1 mm) the thinnest (0.4 mm) and the thickest
that still forms a jet long enough for good comparison (1.9 mm) are depicted in Fig. 2. 

The agreement between the experimental results and Eq. (1) for such a wide range of
values of TL and Vpl, when the liner thickness is constant for each shot is excellent. It
hints to the possibility that the need to make Vpl varying as a function of the jet origin
along the liner rises from sharp changes of conditions along the liner directrix. This in fact
was the reason for the extension of Eq. (1) in [9]. 

SHEAR BAND FORMATION AT THE SFS

The Strength Failure Surface (SFS) during jet formation by a collapsing liner is shown
in Fig. 3, using the Lagrange processor simulation by the Autodyn-2D code. (Note the
small angle between the SFS and the axis of symmetry formed because the pressure is
higher on the jet forming side than on the other side). The value of the maximum defor-
mation energy that the liner material dissipates (denoted as Ed) was chosen for this de-
monstration run example to be 100 Joul/cc. 
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Fig. 2: Ref. [5] Data – solid lines compared to scan predictions – dashed lines.

Fig. 3: The SFS in the liner for assumed 100 Joul dissipation energy.

The above description assumes that there exists a continuous flow of material over the
SFS strength discontinuity namely the loss of strength is a continuous process. This as-
sumption is convenient for the code run but is in fact artificial. In reality, following a
shear band formation at the SFS, a release of tension occurs [17]. The material at the SFS
thus flows forward some distance dS becoming deformed again, until a new shear band
forms at distance dS behind this front. That process slices the incoming material by for-
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ming the next shear band, thus bringing the flow back to the original state. This is a “pul-
sating” mechanism that results from the fact that upon a shear band formation the tension
is temporarily released and time is needed to rebuild it. Let’s denote the strain rate at the
SFS as η and the elastic deformation of the material leading to shear band formation as ε.
Then the recovery-time after each tension release that follows a shear band formation is
given by ε/η. Multiplying this time by the liner’s radial collapse velocity:

(2)

(where Vf is the flow velocity and β is the collapse angle) yields the expected distance
between neighboring shear bands:

(3)

THE DISTANCE BETWEEN NEIGHBORING SHEAR BANDS

We calculate the length along the directrix that corresponds to one average segment
for all the three liners referred to in Fig. 2 and represent it as a function of Vr assuming
Vpl were 85 m/sec for all the three liners (Fig. 4). Then we find that this length (denoted
Lp) becomes independent of the liner thickness apart from the regions where the jet tip
particle is formed and at the far tails. Thus, if we use the real Vpl value for each liner
thickness then the value of Lp for a given Vr is proportional to Vpl. 

We know from statistical analysis of the jet-particles [10] that each jet segment corre-
sponds on the average to four shear bands. The distance between neighboring shear bands
is thus equal to: 

(4)

in the jet velocity region where the measurements were taken namely not including the far
tails. The kinetic energy lost at the material between an already formed shear band and the
next to form, is thus given by the expression: 1/2ρ·(1/4Vpl)2 while the elastic energy
released in the shear band formation is: 1/2ρC2ε3 where C is the sound velocity in the liner
material. Comparing these expressions we find that:

(5) 

Using C = 4000 m/sec for copper the value of ε for the above liners is also given in
Table 1, as well as the respective stress. 

We find from Eq. (3) that this calculation is consistent with the assumption that the
strain rate in compression is proportional to Vr.
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Fig. 4: The length along the directrix per one average segment vs. the radial collapse ve-
locity.

Table 1. – Dependence of Vpl on the liner thickness for 60 degrees opening angle 45 mm
charge diameter, point initiated 65/35 RDX/TNT shaped charge. Quoted from ref. 5 &
corresponding calculated values of elastic strain and stress at shear bands formation.

The values of ε found indicate that the elastic deformation at shear band formation is
few times larger than the static yield strain. The corresponding stress, ρC2ε, is accor-
dingly larger than the static yield stress but still considerably less than the tension of 18 to
24 kbars required for scabbing of the material (see Appendix). This is expected, because
the material must have a considerable excess of free elastic energy in order to break
through the grains when forming a macroscopic shear band but still needs much less free
energy than at the scabbing threshold. 

THE INTERNAL TUBES STICKING TOGETHER 

In the jet, the shear bands form the outer and inner boundaries of the concentric tubes
that form the jet [11]. These tubes are in motion relatively to each other during most of the
jet elongation [11, 12]. Each shear band ends on the formed jet free outer surface. The lo-
cation of this end initiates the beginning of a break. 
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As long as the inertial motion overcomes the material forces it delays the break-up
process. With ongoing time, the relative slide velocity between neighboring tubes slows
down however. The shear bands, initially at much higher temperature than that inside the
tubes’ material, cool by conducting their heat to the tubes, making the temperature inside
the whole jet material more homogeneous. Finally the tubes stick together [12] and the
break-up process enters its final phase and completes. 

As the internal tubes within the jet begin to elongate when the jet forms, they develop
their own secondary set of shear bands that allows them to elongate. These shear bands
form at 45° to the axis of symmetry, not only as shown in [13] but through their thickness
as well (see Fig. 5). These shear bands, formed at the beginning of the jet elongation keep
their length crossing through the tube thickness direction unchanged. As the tubes stick
together the secondary shear bands join to form continuous macroscopic shear bands
through the full thickness of the jet. By the end of this sticking together of the tubes these
shear bands’ absolute lengths eventually accumulates to din times . 

As mentioned above, the slide motion of the secondary shear bands directed at 45° to
the tubes’ thickness starts at the beginning of the jet elongation. Their slide velocity rea-
ched at the break-up stage has on the average an axial component equal to Vpl. Since their
shear lengths component in the axial direction accumulate to din, the result of Eq. (1) is
obtained. 

Fig. 5: Schematic illustration of the internal tubes and how their secondary shear bands
join to form long shear bands that slide until final break-up is reached.

√2

816

Warhead Mechanics

secondary shear bands

secondary shear
bands joined

primary shear bands

X

Y



SUMMARY

Unlike the break-up process of expanding rings and shells of bombs, the shaped
charge jet material becomes sliced with a primary set of shear bands similar to those ob-
served in the heads of retrieved rods for kinetic energy penetration [14]. This set (also ob-
served in [13]) determines the potential breakup locations along the jet. There are four
shear bands per particle on the average [10,15,16]. The value of the Vpl parameter is rela-
ted to the peak elastic strain of the liner material at shear bands formation (ε). The higher
ε, the larger the distance is between neighboring shear bands and also the larger Vpl beco-
mes. In thin liners, ε is small due to the strong influence of the detonation front on the ma-
terial. This influence seems to make the material yield more easily to the shear bands for-
mation mechanism. 

The mechanism by which local short shear bands sum up their lengths to the macro-
scopic value din required for reaching break-up, is characteristic to ductile fracture in
general and is not specific to the shaped charge jet. The formation of sliding tubes by the
material between neighboring primary shear bands imposes, however, its order on this
mechanism, that hopefully may be traced in some detail in the future. 
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APPENDIX – STRESS BUILD UP TOWARD SHEAR BAND
FORMATION

One may ask how such high stresses as mentioned in Table 1 can be obtained inside
the material. To answer let’s analyze how the flow stability is lost in a plastically flowing
metal. 

Stable plastic deformation involves microscopic sliding of dislocations at 45° with re-
spect to the deformation direction [13]. In the example of a collapsing liner, the slide
mainly occurs in those planes that are perpendicular to the liner surface and go through
the axis of symmetry. Let’s look at a cross section of the liner in such a plane. Let’s call
any slide of material toward the outer surface of the liner up and a slide toward the inner
surface of the liner down. As long as the flow is stable the slides upward and downward
balance each other. When stability is lost, this balance is locally lost. It means that regions
appear where there is a bias toward one of these two main directions. These regions tend
to grow by influencing neighboring sliding sites to adopt their bias direction. 

At the beginning of this process there are many such growing regions distributed in
the material randomly. Then, when they reach each other’s influence range (collide) they
will cancel each other’s motion if being biased oppositely and mutually enhance their
biased slide momentum if their slide motion is biased in the same direction. As this process
continues the size of the regions grows and the biased slide motion at their boundaries
also gains momentum, as described above. Finally, the boundaries of two oppositely
biased regions meet, with amplitudes that are so large that the tension needed to mutually
cancel their motion is too high for the material structural strength to hold and a shear band
forms.

According to this description a shear band results from a collision between what we
may call two oppositely biased sliding avalanches that had accumulated sufficient mo-
mentum. This can easily explain why the tension can reach in this case a value few times
larger than the static yield tension. 

Dynamic phenomena such as the above described avalanche can accumulate enough
energy to form shear bands only when the strain rate is so high that their kinetic energy
accumulation rate, more than compensates for their energy loss rate to heating of the ma-
terial and to deforming it. 
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