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INTRODUCTION

The strength properties of materials at high strain rate are needed in determining the
response of structures to the dynamic loading, associated with the shock and impact load-
ing processes. It is well known that the yield strength and the ultimate tensile strength of
materials are determined by the behavior of dislocations, and these depend on both the
pre-history of loading and strain rate. For fcc metals, at low strain rates, the true stress in-
creases linearly with the logarithm of strain rate. At high strain rates, exceeding 103s-1, the
true stress increases approximately linearly with strain rate. These experimental observa-
tions have been explained on the basis of transitions in the rate controlling deformation
mechanism with increasing strain rates [1]. At the low strain rates, thermal activation is
required to assist a dislocation to cross the barriers. However, at the high strain rates, the
continuous motion of dislocation moving through a lattice is resisted by lattice potential
itself, as well as, by the interactions with the phonons, electrons and radiations. These dis-
sipative processes are viscous in nature and lead to a linear dependence of the flow stress
on the applied strain rate. Therefore, with the increase in strain rate, the plastic flow of
metals changes from a thermal activation to the one with viscous drag.

There are different ways of estimating the dynamic tensile strength of metals. The
rupture strength of metals at high strain rates can be determined from the measurements

In the present studies the dynamic tensile strength of aluminum, copper and
mild steel is calculated from the experimental determination of the velocity and
length of different particles of the particulated metal jets. The conical cavities
in metal discs are collapsed by shock wave impact to produce jets. Because of
the velocity gradient between its tip and tail end, the jet deforms plastically un-
til it breaks into a series of particles. The jet elongation and break-up is recor-
ded using Synchro-Streak Technique and Flash Radiography. It is observed that
the jet breaks into particles of smaller length when stretched under higher strain
rates. The angle of the collapsed cavity was changed to produce the jets stretch-
ing under strain rates of 104 to 105 s-1. The average dynamic tensile rupture
strength of aluminum, copper and mild steel has been calculated to be 500,
1100 and 1850 Mpa, respectively, which is roughly 4–5 times their quasi-static
tensile strength.
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of length and velocity [2] of the different particles of the broken jets. In the second me-
thod [3], the metal jet is made to impact on to the target metal to make a crater. Then the
dynamic yield strength of target metal can be calculated from the measurements of crater
radius, jet radius and jet velocity along with the densities of jet and target metals. The dy-
namic tensile strength of the metals can also be calculated from the mechanical equation
of state of the metals. The strain, strain rate and the temperature of deformation process
must be known for this calculation.

In the present studies, the dynamic tensile rupture strength of aluminium, mild steel
and copper is calculated from the experimental data of velocity and length of different
pieces of the particulated jets. 

RUPTURE STRENGTH OF METALS FROM JET BREAK-UP 

The metal jets formed by shaped charge mechanism [4] or shock induced cavity col-
lapse [5] have very high velocity gradient between tip and tail ends. The jet deforms plas-
tically under influence of high velocity gradient. In tensile deformation, the necking is
usually a precursor to ductile fracture. The process of neck formation in aluminum jet,
prior to fracture and break-up is shown in “Fig. 1”. 

Figure 1: Neck formation in an aluminium jet prior to jet break-up. The jet with a tip velo-
city 5.4 mm/µs and stretching under strain rate of 104 s-1 was recorded by a streak camera
after traveling 80 cm from the point of formation.

Neck formation commences at or near the point of maximum load, i.e., P = Pmax.  In
the absence of work hardening, necking would commence immediately after the metal
yields stress. However, work hardening raises the yield stress and stabilizes the plastic
flow. When the increase in stress due to the decrease in the cross-sectional area exceeds
that due to work hardening, an unstable condition exists and necking begins.
The load at any point can be written as

(1)

where σ is true stress and A is the instantaneous cross-sectional area of the jet. At the ma-
ximum load point

(2)
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Assuming that the volume v of specimen does not change during deformation 

(3)

where Ao = A(l+e) is the initial and A is current cross-sectional area, lo the initial length of
the jet and e is the conventional strain. Eliminating dA in eq. (2) and eq. (3), the condition
of maximum load can be written as

(4)

where ε = ln (1+e) is the natural strain. Consequently, necking will take place at a strain
where the slope of the true stress-strain curve equals the true stress at that strain. On fur-
ther stretching, the jet will break into individual pieces of length li.

The computation of the metal strength is based on three assumptions. First: the jet is
ruptured into pieces of maximum length li with kinetic energy of the individual pieces Ei,
in a center of mass system, not exceeding the work due to tension, W, up to the ultimate
strength, i.e. Ei ≤ W. Second: there is linear velocity gradient along the jet. The jet is broken
into pieces of length li, with approximately equal inter-particle velocity difference ∆v, i.e. 

(5)

Third: the jet fragmentation is brittle and the work of deformation of jet material up to ul-
timate strength σf is determined by the expression

(6)

where ρ and E are the density and Young’s Modulus of the jet material. 
The average kinetic energy E of the jet can be written [6] as

(7)

where Vc is the velocity of centre of mass of the jet and ∆V is the velocity difference 
(Vj–V0) between tip and tail ends. If Vc and ∆V are nearly the same then roughly 8% of
the kinetic energy of the jet, relative to centre of mass of the jet, is available to stretch the
jet. Once the jet breaks into n particles, the energy associated with each particle, (M ∆V 2) /
(24 n2), falls off rapidly and no more stretching occurs in individual particles. Specific 
kinetic energy of longitudinal relative motion of each piece Ei is written as (∆v)2/24,
where ∆v = ∆V/n.

From assumption 1 it follows that

(8)
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Putting the value of ∆v from eq. (5)

(9)

The velocity gradient dV/dl or the strain rate decreases with the stretching in the jet. At
the time of jet break-up it can be written as

.εb, the strain rate at break-up. Equation (9) can
be rewritten as

(10)

Evidently from eq. (10), the strength of jet material σf under tension at high strain rate can
be determined from the measurements of strain rate and the average length li of the jet
particles at break-up.

EXPERIMENTS FOR PARTICLE SIZE MEASUREMENTS

Experiments were conducted in which the conical cavities in aluminum, copper and
mild steel discs were collapsed by shock wave impact to form the jets. The jet elongation
and particulation was recorded by Synchro-Streak Technique [7] and in some cases by
Flash Radiography. The particulated copper jet recorded by Synchro-Streak Technique at
three stand-off distances of 410, 510 and 610 mm from the cavity apex is shown in “Fig.
2”. The jet with the initial strain rate of 3.8 x104 s-1 was formed by shock collapsing a co-
nical cavity of half angle 30°. Particulated aluminum jet recorded at 700 and 860 mm
stand-off distances is shown in “Fig. 3”. The jet with initial strain rate of 2.7x104s-1 was
formed by the collapse of conical cavity of half angle 45°. This jet is particulated and 32
particles are clearly visible in the camera record.

5.25 km/s (tip) 2.51 km/s (tail)

Figure 2: Particulated copper jet formed by conical cavity of half angle 30°, recorded at
three stand-off distances of 410, 510 and 610 mm.
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Figure 3: Particulated aluminium jet recorded by Synchro-Streak Technique. The jet,
stretching under strain rate of 2.7x 104s-1, has been particulated into 32 particles.

The jet particles pass across the camera slit at two or three observation points. From
the measurements of arrival time of different particles at two observation points, the velo-
city of each particle is calculated from the expression

(11)

where Vi is the velocity of ith particle, ti1 and ti2 are the arrival times of the centre of mass
of ith particle at first and second observation point and s1 and s2 are the stand-off distances
of the first and the second observation points, respectively. Particles length has also been
measured from the same camera record by using equation

(12)

where Xi is the particle length measured on the film plane, Uwr is the camera writing rate.
Here (Xi / Uwr) is the time of passage of the ith particle across the camera slit. The velocity
and the length of all the particles have been measured to calculate the cumulative jet
length and the strain rate at break-up. 

Figure 4: The distribution of particles lengths in the two aluminium jets, stretching under
strain rates of 1x 104 s-1 and 2.7x 104 s-1, respectively.
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RESULTS AND DISCUSSION

The jet break-up is a strain rate sensitive process. The distribution of particles length
in two aluminium jets stretching under strain rates of 1x 104 s-1 and 2.7x 104 s-1 is shown
in “Fig. 4”. Particles are randomly distributed in terms of their length with the general
trend of increasing particle length towards the tail end. The increase in particles length to-
wards the tail end is more prominent for the jets formed by large angled conical cavities.
The average length of particles in two experiments is shown by the dotted lines in 
“Fig. 4”. The average particle length decreases from 24 mm to 10.3 mm, when the jet
strain rate is increased from 1.0x104s-1 to 2.7x104s-1. The average particle length meas-
ured in different experiments with the three metals is given in “Table 1”. 

Table 1: Dynamic rupture strength of metals calculated from the experimental data of jet
break-up.

Table 2: A comparison of average dynamic tensile strength of copper calculated by diffe-
rent authors.

The dynamic tensile rupture strength of aluminum, copper and mild steel, calculated
from eq. (10), is given in the last column of “Table 1”. It is seen that the average dynamic
tensile strength of these metals is of the order of 500, 1100 and 1850 Mpa, respectively,
which is nearly 5 times their static tensile strength. The dynamic rupture strength of cop-
per calculated from the present data is compared with other similar studies and the results
are given in “Table 2”. Though a different mechanism of jet formation is used still the re-
sults are in close agreement.
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Material Strain rate at
break-up

bε.
(s-1 x 104)

Average particle
length

l i

(mm)

Static tensile rupture
strength

σ
(Mpa)

Dynamic tensile
rupture strength

σf

(Mpa)

Aluminium

1.4
0.55
0.41

10.57
22
32

90
549
449
486

Copper

2.0
1.7

1.26
1.02
0.81

5.9
6.8
9.6
13.2
17.8

200

1060
1039
1087
1210
1296

Mild Steel
2.07
1.9

8.3
8.1 450

1944
1741

Mechanism of
jet formation

Strain rate at break-up

bε.
(s-1 x 104)

Dynamic tensile
rupture  strength

σf

(Mpa)

               Reference

Hemi-spherical
cavity collapse

1.0 – 4.0 1100 Mikhailov and Trofimov [2]

Shaped charge
 liner collapse

1.8 – 2.0 1200 Silvestrov and Gorshkov [8]

Conical cavity
collapse

1.0 – 2.0 1100 Present studies



CONCLUSIONS 

The measurement of length and velocity of the different particles of the particulated
jet allows calculating the dynamic tensile strength of the jet material. The dynamic rup-
ture strength of aluminium, copper and mild steel is nearly 4–5 times their static values.
The results for copper have been compared with other findings and it has been concluded
that the dynamic tensile strength at rupture is nearly 1.1–1.2 Gpa in strain rate region 
104-105 s-1.
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