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An alternative approach is described to evaluate the statistical nature of the
breakup of shaped chargeliners. Experimental datafrom ductile and brittle copper
jets are analyzed in terms of velocity gradient, deviation of AV from linearity,
R/S andlysis, and the Hurst exponent within the coupled map lattice model.
One-dimensional simulations containing 600 zones of equal mass and using di-
stinctly different force-displacement curves are generated to simulate ductile
and brittle behavior. A particle separates from the stretching jet when an ele-
ment of material reaches the failure criterion. A simple model of a stretching
rod using brittle, semi-brittle, and ductile force-displacement curves is in
agreement with the experimental results for the Hurst exponent and the phase
portraits and indicates that breakup is a correlated phenomenon.

INTRODUCTION

Numerous models have been proposed in the literature to describe the particul ation of
shaped charge jets. Hirsch [1] developed a breakup time model related to the initial jet
radius and the particle velocity difference. Chou and Carleone [2] suggested that plastic
instability controlled by the material strength dictates the breakup process. Similarly,
Walsh [3] evaluated the plastic instability and the break-up process. Chanteret [4,5] eva-
luated the vel ocity gradients and shaped chargejet length aswell asthe influence of mate-
rial density on shaped charge performance. Zernow and Chapyak [6] developed a 3D
computation model for breakup that considers the double-helix surface perturbations.
Mayseless et a. [7] suggested a novel approach to characterize breakup time based on
the observation that the breakup distance for a given liner material and geometry was a
constant.

In spite of the large experimental data bank of shaped charge jet particulation, very
little attention has been applied to the statistical analysis of the breakup. It has been sug-
gested that appropriate application of various statistical methods will lead to a better un-
derstanding of the influence of shaped charge design and shaped charge material proper-
ties. Schwartz et al. [9] evaluated the statistical nature of the breakup phenomenon in
silver jets using the return map of Curry and York. In that investigation, two high purity
silver liners were fabricated in the standard 81-mm shaped charge design. The methods
used in characterizing nonlinear dynamical systems were applied to the measured velo-
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city fluctuations for two silver shaped charge jets. Evidence was presented that the fluctu-
ations exhibit a non-Gaussian behavior indicative of an underlying nonlinear dynamical
system. The use of phase portraits gave visual cluesthat the origin of the fluctuations may
be due to a quasiperiodic route to chaos involving two nonlinearly coupled resonators
anal ogousto Rayleigh-Benard Convection.

In the present work, the role of nonlinear fluctuations resulting in the statistical parti-
culation of shaped charge jetsisinvestigated for two copper jets using a coupled map lat-
tice (CML) model. Such models have been successful for studying instabilities in open
fluid flows. The nonlinear material dependence of stress on the strain may be coupled to
theinertial degrees of freedom by means of CML. Theresulting nonlinear stressand velo-
city fluctuations may be studied using the techniques of nonlinear dynamics. Of particular
interest isto study the differences in the phase portraits for brittle versus ductile materials
and for different stochastic models for impurities and the resulting influence on the con-
stitutive behavior. It is expected that brittle materials will manifest a well-defined attrac-
tor in a phase portrait. The tendency for more ductile materials to have a more diffuse at-
tractor isinvestigated for different stress-strain relations and impurity levels. It is hoped
that the ideas presented in this paper will allow useful information to be extracted from
shaped charge jet datathat will result in abetter understanding of jet break-up.

EXPERIMENTAL DATA

The copper shaped-charge liners were produced from OFE 99.99% copper, Hitachi
C10100 bar stock. The linerswere back extruded using a standard cold-forge process into
the shape of hollow cones (base inner diameter = 81 mm, apex angle = 42°). After for-
ging, the liners were annealed in order to stabilize the microstructure for subsequent sul-
fur doping as described in [9]. The grain size of the liners was measured using standard
metall ographic techniques, and the breakup times were determined from the flash x-ray
radiographs of the jets. The experiments use a high precision, 81mm Cu shaped charge
design, cast loaded with Octol high explosive. The two liners vary in sulfur content and
grain sizeto produce breakup times of 193 and 147 msec for the ductile and brittlejets, re-
spectively. Long standoff flash X-rays are used in order to characterize the particulated
shaped charge jets as shown in Fig. 1. The velocity versus particle number for two diffe-
rent shaped chargesis shown in Fig. 2aand b. The deviations of the velocity from afitted
straight line versus particle number are shown in Fig. 2c and d. Phase portrait mapsfor the
twojetsare presented in Fig. 2 eand f.
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Figure 1. Radiographsfor thetwo jets (a) ductile behavior, and (b) brittle behavior.
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Figure 2: (a) Velocity versus particle number for the ductile jet, (b) velocity versus parti-
cle number for the brittle jet, (c) velocity deviation from a straight line for the ductile jet,
(d) velocity deviation from astraight line for the brittlejet, (€) diffuse phase portrait of the
ductilejet, and (f) strong phase portrait of the brittlejet.

STATISTICAL COUPLED MAP LATTICE MODEL

The complex nonlinear dynamics of spatially extended systems can exhibit arich va-
riety of structures and patterns across many time and space scales. Coupled Map L attice
(CML) models [10] have been successful in studying spatiotemporal pattern formation
and the role that deterministic fluctuations play in the generation of observed macrosco-
pic states. For example, the generation of instabilities and the transition to turbulence in
hydrodynamic open flows has been modeled using CML. The particulation of a shaped
charge jet is statistical in character as can be seen, for example, by measuring jet particle
length, interparticle distance and velocity, or the deviation in particle velocity from the
velocity determined from the average velocity gradient, I'. It is expected that the fluctua-
tions will be highly correlated if they reflect an underlying dynamical attractor in phase
space. If the dimension of the attractor islarge or there exists more than one low dimen-
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sional attractor, it is expected that the correlations may be substantially weakened. Mate-
rial heterogeneities are also expected to ater the spectrum of fluctuations. In the present
study, two different methods are used to characterize correlations of the velocity fluctua-
tionsfor both the CML model calculations and in the experimental data of two Cu shaped
charge jets that differ significantly in the time to breakup time, (147 psand 193 us). The
first method isknown as R/S analysis and is used to extract a correl ation exponent, known
as the Hurst exponent. The second method involves the construction of phase portraits
and provides a graphical representation of trgjectories in phase space that can revea the
existence of an underlying attractor. The CML is a one-dimensional chain of N-1 linked
nonlinear functions, f, which depends only on the spatial coordinate, X. This function re-
presents a force-distance, or equivaently, a stress-strain relation that characterizes the
strength of the material. The force acts on adjacent zones of equal mass, m, and servesto
alter thekinetic energy of each zone according to:

dv.
m; EL: f(xj+1_xj —0y)- f(xj _Xj-l_AO) : 1)
Thefunction, f, istaken to have theform,
23X
fx)=fF__, ——
(X ™ T @) )

and is approximately linear for small x, corresponding to an elastic regime close to the un-
stressed length, Ag. Theforcetakesits maximum value of g at anet displacement of L.

In order to simulate the breaking of two adjacent spatial zones, the forceis set to zero
according to aprobabilistic rule that depends also on the separation of the zones,

—k(@- X )2 3
Theinitial state of the jet at t = 0 sec consists of N zones of equal mass, and zone j has a
width given by
o dot(j-0)
X = AxE : (4)

for a strain rate, I'. The parameters are chosen such that the maximum strain in the last
zone of the jet is less than the fracture strain for the particular material strength model in
view. Presented in Table 1 are al of the model parameters used for two different brittle
cases and one ductile case. The fracture strain for the ductile case is chosen to be twice
that of the brittle case which is consistent with the 46 ps difference in breakup times (i.e.,
193 us— 147 ps) for thetwo experimental Cu jets.

Table 1. Parametersfor the CML Model

Strength Model | N Ax,(cm) |At(s) |k reshH [P, &

Brittle 600 0.10 3.0107 | 100. 10* 102 15
Semi-Brittle 600 0.10 3.0107 | 10. 10* 5010° | 1.5
Ductile 600 0.10 3.0107 | 10. 10* 5.010° | 3.0
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Initially, the velocity and position of each node is specified. The relative positions be-
tween the center of mass of each adjacent fixed mass zone are then used to compute the
force on a given mass. Setting the value of the force to zero simulates the separation of
two adjacent masses. A random number generator and the probabilistic rule determinethe
criterion for separation of adjacent zones. Separations occur first near thejet tip (high ve-
locity) dueto the higher strains at t = 0. The probability that they occur away from thetip
increaseswith time. Fig. 3isadensity plot showing the position and time that a separation
occursin the calculation for two different strength models. The brittle case (Fig. 3a) exhi-
bits a more deterministic time ordering as the position of the separations move from the
jet tip towardsthe tail. The ductile case (Fig. 3b), on the other hand, is much less determi-
nisticin itstime ordering. The phase portraits of the velocity fluctuations, AV, for both the
brittle case (Fig. 3c) and ductile case (Fig. 3c) show that the brittle case is much less dif-
fusein phase space than the ductile case. Thisisqualitatively similar to the phase portraits
shownfor Cujetsin Fig. 2 eand f. The phase portrait for the semi-brittle case al so showed
the same trends, being more diffuse than the brittle case but less diffuse than the ductile
case.

The phase portraits provide a graphical representation of velocity fluctuation correla-
tions aong the jet. A more quantitative method, known as R/S analysis allows one to
extract the Hurst exponent (H), named after the developer of this method [11]. The Hurst
exponent can take on values between 0 and 1. An H value of 1/2 suggests no correlation
between a particular value and the next, whereas, H >1/2, suggest a positive correlation
and H<1/2, suggests two values are anti-correlated. The value of H for the silver jets re-
ported in [9], have an H = 0.7. The value of H for the Cu jets are both H ~ 0.7. The R/S
plot for the CML computationsis shown in Fig. 3efor the brittle case and hasavalue of H
= 0.85 consistent with a highly deterministic breakup. The R/S plot for the ductile caseis
shown in Fig. 3f and tends to lie between two slopes corresponding to H = 0.7 and 0.8.
The samejet can show regionswith different values of H.
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Figure 3: (a) Density plot of breaking times for each zone for a brittle jet, and (b) density
plot of breaking times for each zone for ductile jet. Units of time are 0.3 ps. (C) strong
phase portrait of the brittle jet, (d) diffuse phase portrait of the ductile jet, (€) R/S plot of
velocity fluctuations for brittle jet, and (f) R/S plot for the ductile case. The slopes of the
straight lines on the double-logarithmic plots (i.e., Hurst exponents) are shown. A value of
H =1, implies perfect correlation and avalue of 1/2 israndom, showing no correlation. A
valueof 0.7 istypical inthe experimental jets studied to date.

SUMMARY

We are exploring alternative methods to eval uate the statistical nature of particulation
of shaped charge jets. As atest case, we experimentally determined the breakup time of
two copper jets, one exhibiting brittle behavior, and the other ductile behavior. The devia-
tion of linearity in particle velocities is used to determine the phase portrait. Two di-
stinctly different force-displacement curves are generated to simulate ductile and brittle
behavior. A simple model of astretching rod containing 600 zones of equal mass startsthe
calculation. When an element of material reaches the failure criterion, a particle separates
from the stretching jet. A comparison of the experimental and simulated results shows re-
asonable agreement and suggests this approach isworthy of further study.
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