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INTRODUCTION

For many years the analysis of the jetting phenomena was based primarily on the
quasi steady state assumption of the flow near the jetting region, of a collapsing axi-sym-
metric liner, or a symmetric linear liner collapse. The whole jetting process was demon-
strated by detailed numerical simulation, however, most design tools, analytical, and even
simulational, were strongly based on a quasi-steady flow assumption. In all the simula-
tions and models, the symmetry of the process was not just implied, it was the only one
condition imposed on a complete numerical simulation, or on a Bernoulli type solution.

In an analogous way recent works tried the same procedure to develop the foundation
and to solve the problem of the jetting from asymmetric liner collapse [1-5]. There are
also works concerned with the influence of slight asymmetries, within the allowable toler-
ances, on the performance of precision shaped charges [6-8]. In this work we are mainly
concerned with full scale asymmetries. Surveying the literature on this problem, we in-
evitably arrive at the conclusion, that the same type of a general procedure, resulting in
fairly quantitative comparison to all known experimental results does not exist. Even qua-
litative results are far from satisfying. They fit poorly the experimental results. If they
tend to resemble locally along part of a jet, they fall far away in other parts.

In this work we show the difference between, the existence of rules governing
the phenomenological as well as the computational aspects of collapsing sym-
metrical liners or shells and jet formation, and the absence of such rules in the
asymmetrical case. Based on analytical work in the field of potential flow, it
was clear that a single equilibrium solution for the outflow of impinging jets or
shells does not exist. Based on detailed numerical simulations of realistic
asymmetrical impinging shells we come exactly to the same conclusion as with
the analytic potential flow. The simulations show clearly that any solution de-
pends on the details of boundary and initial conditions, and not on the existence
of a single equilibrium stable solution, based on a general variational principle.
The significance of those conclusions are crucial when dealing with asymme-
trical flows because of the absence of any simplifications like quasi-steady Ber-
noulli type modeling, which has been used extensively in the theory, as well as
design work in the field of shaped charges. 
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In this work we try to establish the indeterminacy of the solution of the outgoing flow
of two asymmetric impinging jets. This was actually the point of view formulated in the
fifties for potential flow [9]. It is worthwhile to quote two sentences formulated by Birk-
hoff in [9]. “Physically, it is natural to suppose that if the incoming jets are given, then the
resulting flow in determined. However it can be shown that, contrary to expectation, the
resulting flow is in fact indeterminate, except in the case of parallel impinging jets!” and
the second sentence states: “The Physical significance of this indeterminacy is hard to
grasp; all flows are in equilibrium. It is not clear what is the condition, if any, for the
stable equilibrium of non-parallel impinging jets. It may be that all stationary configurations
are unstable”. Birkhof’s statements does not rule out the possible existence of a variatio-
nal principle which should be imposed on the flow, it does not rule out also, the indetermi-
nacy, in the symmetric case if the symmetry is not imposed on the flow.

Birkhoff’s arguments are absolutely correct for potential flow without imposing any
additional constraints. One might assume that in the case of a realistic flow, including
well defined material like copper for instance, with reasonable equation of state, the re-
sults of detailed simulation of the out going flow will reveal the existence of general prin-
ciples leading to the unique solution which is the stable one. We will show in detail that
this is not the case, and that the indeterminacy is true in general for any flow independent
of its material properties. Using the Eulerian processor of the AUTODYN, we will show
how easily we can switch between highly different solutions for exactly the same pro-
blem, or actually determine arbitrarily the solution as we wish. The only conditions that
all solutions should fulfil is, of course, the mass and momentum conservation between the
incoming and outgoing flows. 

The most striking result is that even the solution in a symmetric case is not a unique
one, or the most stable one. If the symmetry is not imposed on the analysis or the numeri-
cal configuration, we can easily derive infinite different solutions, just the same as in the
asymmetric case, by slightly manipulating the initial conditions of the impinging two si-
milar streams. Once, an asymmetrical solution is established, any further continuation of
the simulation shows no sign of shifting the solution towards the symmetric one.

In the next 4 sections we describe the following processes.
- The strong dependence of the resulting out flow on the variation of the EOS (Equa-
tion of State).
- The independence of the resulting out flow on the EOS if the  flow has already been
established by either different EOS, or by different initial conditions.
- The strong dependence of the resulting out flow by changing the initial condition.
- The strong dependence of the resulting out flow on initial conditions in the symme-
tric case.
In the last chapter we add a comment on parallel impinging jets.
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VARIATION OF EOS

The flow configuration we chose to demonstrate the indeterminacy consist of: Two
plane streams having the same speed (3 mm/ms) are moving into each other with an angle
of 120° between them. The width of the upper flow moving downward is 0.4 times the
width of the lower flow moving upward, see Figure 1. The incoming flows are arranged to
move exactly along the direction of the grid lines, I lines in the AUTODYN, filling
exactly the interval between them. The direction of the I lines change by 60° at the central
subgrids. The J lines are kept horizontally in both the upper and lower planes. In this
arrangement the incoming flows move smoothly from the boundaries, where we apply the
free flow conditions down to collision area. To keep a good level of accuracy, we use a
high grid density around the central subgrids where the collision and the build up of the
amount and direction of the outflow take place. The details of the grid are shown in Figure
1 and explained later in the discussion section.

Fig. 1: The initial grid setup. The upper left corner is shown magnified on the right side.

The difference in EOS

Figures 2 and 3 demonstrate the simulational results of exactly the same initial flows,
but with a single (albeit significant) difference in one parameter in the EOS. We use the
hydro option (of otherwise the full Steinberg-Guinan model) of the AUTODYN changing
only the parameter S in the relation:

Us = C0 + SUp (1)
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Where Us is the shock velocity, Up the particle velocity and S is coefficient adjusted
for each material. By hydro we mean that the material has no strength, the flow stress and
the shear modulus are set to zero. First we simulate the flow with the nominal value of S =
1.489. Then we vary  the parameter significantly to S = 5. and repeat the simulation from
the beginning. The slope of any isentrope in the (P,V) plane and especially in the hugoniot
changes dramatically with increasing S. Increasing S simply means moving towards in-
compressible fluid.  For instance, the limiting jump in density is given by:

(2)     Where ρs is the shocked density, and ρo is the initial one.

Fig. 2: The resulting outflow in the Fig. 3: The resulting outflow 
simulation with the nominal S=1.489. in the simulation with S=5.

Results

Figure 2 demonstrates the outflows. The thicker one moves to the right in a direction
slightly above the horizontal, while the thinner one takes a direction which creates an
angle of about 38.88° to the upper incoming stream. The horizontal direction has an angle
of 60° to the upper initial stream.

In Figure 3  we show exactly the same initial flows, but in this case the value of S was
chosen to be much higher S = 5. The resulting outflows are significantly different. The
thinner outflow moves along a direction close to the horizontal one. The angle  between
the thinner outflow to the upper inflow is about 54.58°, a change of about 16°, compared
to the direction with the nominal value of S.

EQUILIBRRUIM 

Now we turn to the question, whether the two solutions for the nominal EOS and the
one with S=5 are the unique equilibrium solution? To answer this question, we use the
two stable solutions as initial conditions for the next stage, where we switch the value of
the parameter S between them. Figure 4 shows the results of the continuation of the simu-
lation of the flow in Figure 2 after changing the value of S from the nominal to the value of
5. Figure 5 shows the results of Figure 3 after switching the value of S from 5 to the nomi-
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nal 1.489. Practically there is no change between Figure 2 and Figure 4, and only a slight
change in angle between Figures 3 and 5 of about 1.2° towards the horizontal direction.
That slight change is insignificant compared to the change of about 16° between the two
solutions, and actually it is also in the wrong direction! The results after the switching va-
lues of S, clearly, show that all sulutions are equally stable once they are formed, and
there is no preferred stable solution depending on the EOS. Before getting to the heart of
the problem, namely, the indeterminacy even in the symmetric case, we show in the next
section how we can change final flows by manipulating temporarily the initial conditions,
and not just by different EOS.

Fig. 4. The result of the continuation of Fig. 5. The result of the continuation 
The solution in Fig. 2, obtained with of the solution in Fig. 3 obtained after
S=1.489 after switching to S=5. switching to S=5.         

VARIATION OF INITIAL CONDITIONS

Let us take again the solution established in Figure 3, with S=5, and start its simulation
again with a slight change in initial conditions. The upper initial inflow is filled down to
the central area. The lower initial inflow fills the lower part up to a gap of 1.09 mm to the
central area. In this case the initial condition takes place slightly below the collision
plane. This change, by no means, changes any thing significant in the problem. For given
two incoming streams with well defined width’s and center lines, the collision plane is de-
fined uniquely, and if a single stable solution existed, the slight change in initial condition
can only delay slightly the appearance of the unique stable solution, but it cannot change
it to a completely different one.

In Figure 6 we show the results of that simulation. The out flow in this case is much
closer to the results shown in Figure 2 with S=1.489, the nominal one. The angle with the
initial inflow is even slightly smaller by about 1.3°. As we see, we can achieve about the
same effect either by a significant change in EOS, or by a slight change initially in the lo-
cation of the collision. We are going to use that mechanism to test variations in the sym-
metric case.
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THE SYMMETRIC CASE

In this case we take the same flow configurations with the upper incoming stream
equal in width to the lower thicker one in the previous cases. The angle between the two
streams is the same 120°. In Figure 7 we show the symmetric solution. To increase the in-
itial disturbance, the initial gap between the front of the lower incoming stream and the
central area was set to almost 11 mm. In that case, when the collision begins, the upper
stream has already reached the lower grid boundary. Any further increase of the gap will
result in the same flow. It just delays the beginning of the collision at exactly the same
point with exactly the same initial conditions. Figure 8 shows the striking result, which
consists of two non symmetric streams, producing different angles with the central collision
plane. The angle between the thinner outflow and the upper incoming stream is around
51.7°. The flow in Figure 8 is kept in the same position, without any observable change
for more than 40 µs.

DISCUSSION

For the sake of consistency we kept the same grid shape and density in the central sub-
grids, where the significant interaction takes place, and the same logarithmic increase in
the outer subgrids, as shown in Figure 1. Likewise we kept the same angle between incom-
ing streams, and their widths. In the case of the symmetric problem both streams share 
the same width as in the thicker one in the previous cases. To maintain high numerical
precision the central part divides the thicker (3 mm) incoming flow into 60 division. As a
consequence, the thinnest outgoing flow is divided into at least 15 divisions. The saw
teeth amplitude along the thinner outflow tend to increase as the flow moves from the
central dense grid to the outer grid, where the spacing between divisions grow logarithmi-

Fig. 6: The resulting outflow in the simulation with S=5 and initial 1,09 mm gap
between the lower incoming flow and the collision plane.
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Fig. 7: The result of the symmetric flow Fig. 8: The resulting outflow in the
where the collision starts symmetrically. Symmetric case with initial 10.93 mm 

gap bellow the collision plane.        

cally. In our simulations we found no dependence on strength. This is probably due to the
high collision velocity in our problems, that produce near the stagnation points pressures,
which are orders of magnitude higher than the strength. We chose intentionally 120° be-
tween the incoming streams, to compromise between the requirements to have the whole
incoming stream bounded exactly between two I lines, and to have, on the other hand, a
grid shape which is not too far from a square. However, we took care to have a very dense
square grid in the central part. In our study we manipulated the initial conditions by delay-
ing slightly the collision between the two incoming flows. There are other powerful
methods, for instance, starting with different initial velocities which gradually approach
the final common velocity. 

In the case of parallel impinging jets, potential flow predicts a single unique solution.
We have grounds to believe that this is the case also in real flow. However, it cannot be
proved by few simulations that show no contradiction. It needs further work to prove and
substantiate it.

CONCLUSIONS

The most significant conclusion of this work is the clear observation of the difference
between symmetric and asymmetric flow configurations. In any case the exact boundary
and initial conditions, determine uniquely the resulting flow, and not a variational princi-
ple resulting in a single flow. Whereas in symmetric configurations, the flow towards the
jetting zone, is practically symmetric,  hence also the solution, the asymmetrical solution
depends completely on the details of the incoming flows, and cannot be approximated or
modeled, in a general way by a Bernulli type of flow, or any other type of approximation.
The only way, to solve asymmetrical problems is the direct simulation which takes into
account the exact boundary and initial conditions of the incoming flow fields, to produce
the exact and uniquely defined outflow. It is speculated that even problems with small de-
viations from symmetry, suffer from the lack of a general solutions, and depend also on
the details of the asymmetric flow into the jetting region.
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