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This paper deals with electromagnetic actions used to control the shaped-
charge effect at different stages of shaped-charge operation. A decreasein pene-
tration of a shaped-charge jet is attained by passage of a powerful electric cur-
rent pulse through it, production of an axial magnetic field in the shaped-charge
liner immediately before shot, and production of a magnetic field in the con-
ducting target material that istransverse to the direction of jet propagation. Re-
sults of experimental and theoretical studies of different versions of electro-
magnetic actions are analyzed, and the associated physica effects are
considered.

INTRODUCTION

One of the methods of “intruding” into the physical mechanisms of the processes de-
termining the efficiency of shaped-charge (SC) action in order to obtain desired changes
in the course and characteristics of the processesisthat of using different versions of elec-
tromagnetic actions. Depending on the problem solved, such actions can both increase
and decrease the shaped-charge jet (SCJ) penetration. The present paper deals with elec-
tromagnetic actions used for the second purpose and implemented at different stages of
shaped-charge operation (Fig. 1).

The results given below were obtained in theoretical and experimental studies of the
effect of an axia electromagnetic field produced in the liner of a shaped charge (Fig. 1a)
on the formation of a shaped-chargejet and the jet penetration into the target, the effect of
the electric current passing through the SCJ and the effect of the self-magnetic field on the
stability and disruption of the SCJ prior to itsinteraction with the target (Fig. 1b), and the
effect of atransverse magnetic field produced in a conducting target on the final SCJ pe-
netration into thetarget (Fig. 1c).
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EFFECT OF ELECTRIC CURRENT ON THE STABILITY AND
DISRUPTION OF A SHAPED-CHARGE JET

The action of apowerful electric-current pulse on a shaped-charge jet (so-called elec-
trodynamic action) has been studied more comprehensively. A simple device for electro-
dynamic action consists of two metal plates connected with a source of electric energy
(Fig. 1b). Usually, the device is located ahead of the target. The current starts to flow in
the shaped-charge jet when the jet closes the electrodes. It is shown experimentally that
actionon ajet by acurrent of sufficient strength can considerably decrease the penetration
capability of thejet or leadsto its complete disruption [1-3].

The degree of decreasein target penetration by a shaped charge jet under electrodyna-
mic actions of variousintensitiesis given in Fig. 2. The figure shows experimental curves
of the discharge current flowing through the shaped-charge jet from a 50-mm diameter
charge for penetration into an aluminum target (in these experiments one of the electrodes
was placed directly on the target). The figures above the curves denote the penetration
depth in the targets corresponding to the present regime of electrodynamic action. In the
absence of action, the penetration depth for the aluminum target is 365 mm.

The most probable physical causes of the decrease in the penetration of a shaped-
charge jet into a target under electrodynamic action are the development of magnetohy-
drodynamic (MHD) instability of the necking type, which resultsin a decrease in the ef-
fective jet length and volume fracture of the jet material. MHD instability arises in the
interelectorde gap when a current passes through the jet. Volume fracture of the shaped-
chargejetismanifested by radial dispersion of the jet material after it leavestheinterelec-
trode gap. Thisisfollowed by adecrease in the average density of the jet material and, as
a conseguence, a decrease in its penetration capability. Motion of the shaped-charge jet
elementsin the interelectrode gap produces prerequisites for volume fracture (intense heat-
ing and thermal softening or even melting of the material with simultaneous compressing
action of electromagnetic forces), which are manifested when the jet elements leave the
interelectrode gap (disappearance of the compressing action of electromagnetic forces
with subsequent radial unloading, occurrence of a three-dimensiona tensile stress state
and, as a consequence, further dispersion of the softened material of the shaped-charge
jet).

Asfollows from X-ray photographs, not only does electrodynamic action accelerate
the development of natural plastic instability, leading to more rapid breskup of the
shaped-chargejet into separate fragments, but it can also (having sufficient intensity) lead to
“disk formation”. In this case, the jet material at the originally small narrowings beginsto
undergo intense axial compression with asharp increasein the radius of the bulges. Thus,
thejet segment becomes aflow of thin disks, which move after one another and have mar-
kedly greater diameter than the thickness and initial radius of the jet. Figure 3a,b gives
two X-ray photographs of shaped-charge jets subjected to powerful current action, which
aretaken at different times denoted on the current curve (Fig. 3c). As can be seen from the
X-ray photographs, the head elements of the shaped-charge jet, which have passed the
interel ectrode gap at the beginning of the current discharge, are practically not affected by
the current by virtue of its smallness. In contrast, the elements of the middle and tail parts
of the jet, which are under the maximum of the current discharge curve, undergo consid-
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erable deformations. Directly in the interelectrode gap, the “disk formation” processis
manifested only slightly and, by virtue of the inertia of the material, it occurs only after
thejet elements|eave the action region.

Theoretical calculations of the development of MHD instability with passage of a cur-
rent through a SCJ were performed for amodel [4] in which the SCJ elements were trea-
ted as parts of an incompressiblerigid-plastic rod of variable radius assuming that the rod
cross sectionsretained their plane shapes during the entire deformation process. Theforce
action of the current was alowed for by specifying the surface magnetic pressure. The
model takesinto account the thermal softening of the rod material, and the current density
was assumed to be uniformly distributed over its cross sections.

The volume fracture mechanism is described using amodel of auniformly elongating,
compressible, elastoplastic, cylindrical rod with alinear decreasein the strength yield of
the material with rise in temperature [4]. Numerical results show that the velocity of ra-
dial dispersion of the jet material can be estimated from the simple energy relation assu-
ming that after cessation of volume compression, the potential energy of the jet volume
compression by the magnetic pressure is expended on doing work on fracture of the mate-
rial, “quenching” of the kinetic energy of the axially convergent, radial motion of the jet
particles, and on imparting them the kinetic energy of radial dispersion. In this case, the
work of the jet material fracture was assumed to be equal to the potential energy of its
bulk extension with the average stress determined by the current value of the strength
yield.

The penetration of the SCJ segments subjected to volume fracture was calculated on
the basis of the hydrodynamic theory of penetration combined with the concept of the cri-
tical velocity of penetration. It was assumed that after exit from theinterelectrode gap, the
average density of the jet material decreased continuously as a function of the velocity of
its radial dispersion and the lower threshold of the jet velocity necessary for penetration
into the target increases with decreasein density.

The behavior of shaped-charge jets under the action of a current pulse established by
numerical simulation agrees, at least qualitatively, with X-ray photographs of jets subjec-
ted to electrodynamic action (Fig. 3).

The results of calculations of the decrease in the shaped-charge jet penetration into a
target for this or that mechanism of jet fracture were compared with experimental data on
penetration of aluminum target by the jets from a 50-mm shaped charge (see Fig. 2).
Fair agreement between the calculated and experimenta results for an aluminum target
was obtained under the assumption that MHD instability develops when current flows
through the jet not only in theinterelectrode gap but also when the jet movesin the cavern
inside thetarget.
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EFFECT OF AN AXTAL MAGNETIC FIELD IN
SHAPED-CHARGE LINERS ON THE FORMATION AND
PENETRABILITY OF SHAPED-CHARGE JETS

In shots from shaped charges with an axial magnetic field produced beforehand inthe
metal liner of the shaped-charge cavity, the regime of liner compression that occursis si-
milar to the operation regime of a magnetocumulative generator (MCG) — a device for
producing ultrastrong magnetic fields[5]. The principle of MCG operation isbased on the
phenomenon of magnetic cumulation — sharp amplification of an initial (relatively weak)
field inside a conducting shell (liner) resulting from compression of the field due to col-
lapse of the liner. The generation of strong magnetic fields |eads to the occurrence of po-
werful mechanical, thermal, and el ectromagnetic effects. Producing conditionsfor the oc-
currence of such effects during shaped charge firing, one can affect the shaped-charge
performance.

Simple estimates show that in the jet-formation region with “pumping” of afield init
to 100 T, the rate of heating of the material can reach 1000 K/psec. The force action of
thisfield is estimated by a magnetic pressure of about 10 GPa, which correspondsto the
pressures resulting from HE detonation.

Combined with simultaneous powerful “thrusting” action of electromagnetic forces,
powerful heating of the jet-formation region, capable of transforming the jet material not
only into the liquid state but also into the vapor state with occurrence of thermal explo-
sion, can lead to dispersion of the jet-forming region of the liner and the impossibility of
shaped-chargejet formation.

The effect of a magnetic field on the jet-formation process was studied by numerical
solution of the two-dimensional problem of oblique collision of plane jets of acompressi-
ble, perfectly conducting fluid with the presence in the jet material of a magnetic field
oriented paralel to the collision plane [6]. Figure 4 shows jet flows that arise in the ab-
sence of amagnetic field (Fig. 4a) and inaninitial field Bo =5 T (Fig. 4b). Ascan be seen
from Fig. 4b, because of the presence of a magnetic field, the formation of ajet moving
along the collision plane is impossible. The reason for this is the sharp increase of the
magnetic field in the contact region, where the material of the colliding jets, which isfor-
ced to spread in the transverse direction, undergoes large tensile deformation along the
magnetic lines, which ensuresfield generation.

a

Fig. 4.
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Experiments carried out with a 50-mm diameter shaped charge showed that the pro-
duction of a magnetic field intheliner just before firing can sharply lower the pene-
tration capability even for magnetic fields of tenths of a Tesla. When afield of about 1 T
was produced in the liner, penetration was generally absent. In this case, on the surface of
the steel target under the location of the charge, one observes only numerous shallow cra-
terswith dimensions not exceeding 5 mm and coppering traces.

Among the factors considered in [6] to explain the observed effect, the most likely is
the assumption of sharp amplification of the magnetic field in the jet-formation region.
The amplification of the compressed magnetic field at the apex, where the liner cross sec-
tion issmall, should be weak and should not hinder collapse of this part of the liner with
formation of head elements of the jet. In the process of jet formation, the liner material,
colliding along the charge axis, ceasesto movein theradia direction and undergoeslarge
tensile deformation in the axial direction, i.e., along the magnetic lines of the field pro-
duced in the liner. According to the effect of “freezing” of amagnetic field in aconducting
material [7], this process should result in field generation and amplification directly in the
material of the jet formed.

The question of what produces prerequisites for further dispersion of the jet if the
magnetic field inside the jet exceeds the external field can be conclusively clarified after
precision electrophysical and X-ray studies.

PENETRATION OF A SHAPED-CHARGE JET INTO A
CONDUCTING TARGET WITH A MAGNETIC FIELD

The above-stated deformation conditions, leading to intense generation and amplifi-
cation of amagnetic field in the jet, are also produced by high-velocity penetration into a
conducting target with a transverse magnetic field produced in it beforehand [8]. In this
case, according to the effect of “freezing” of amagnetic field in amaterial, field amplifi-
cation is caused by the very large tensile strains along the magnetic lines that arise in the
particles of thetarget layer adjacent to the penetrator.

The features of the flow and physical processes that arise when a shaped-charge jet
penetrates into a perfectly conducting target with a magnetic field were analyzed for a
plane scheme of interaction by a simplified quasi-two-dimensional model taking into ac-
count the force action of the compressed field [8]. The hydrodynamic theory of penetra-
tion was used as the basis, and the penetration process was treated as direct collision of
two jets of incompressible fluids. In the jet corresponding the target, the induction of the
transverse magnetic field By at theinitial time was considered uniform over thejet length.
It was assumed that there was no magnetic field present in the SCJ material during the
entire penetration process.

The magnetic field in the target increases only at the initial stage of shaped-charge jet
penetration, and the further motion of the jet only leads to an increase in the dimensions
of theregion wherethe field reached itslimiting value. In this case, asfollowsfrom calcu-
lations, the ultimate amplification of the magnetic field is determined by the equality of
hydrodynamic and magnetic pressures at the interface between the jet and the target, and,
hence, one might expect generation of strong magnetic fields during jet penetration.
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As calculations show, when a shaped-charge jet penetratesinto atarget with amagne-
tic field, aregion with astrong field should form not only ahead of the jet but also on the
thelateral surface of the cavern. Thisisdueto the fact that elongating in the transverse di-
rection, the target particles on the path of the jet move aside and appear in the material
layer on the lateral surface of the cavern, maintaining the high magnetic field resulting
from deformation. In addition, generation of a magnetic field should occur directly on
most of the lateral surface of the cavern because of its intense shear deformation during
penetration.

The formation of a “magnetic” layer with a high magnetic field along the cavern
boundary can result in one more effect — explosion-like dispersion of the material of the
layer with collapse of the cavern formed by the jet. Prerequisites to such dispersion are
duetointense Joule heating of the “magnetic” layer and the magnetic pressure acting in it.

According to the estimates of [8], for magnetic fields of = 100 T, ensured by genera-
tion during high-velocity penetration, the velocity of particles of the surface layer of the
cavern can reach severa kilometers per second, which corresponds to the acceleration
velocities of bodies driven by condensed HE. Powerful pulsed action on a penetrating
shaped-chargejet can lead to itsfracture.

Thus, during penetration of ashaped-charge jet into aconducting target with amagne-
ticfield, effects can occur that lead to adecreasein jet penetration.

CONCLUSION

The studies performed showed that the use of magnetic fieldsin experiments with SC
opens up new possihilities of controlling the shaped-charge effect. The effects studied
previously can be of interest from both a practical viewpoint (decreasein the SC penetra-
tion in the target) and a methodical viewpoint in studies of the behavior of the materia
and physical characteristics of shaped-chargejets.
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