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AERO STRIPPING FROM A WATER JET
D. J. Vavrick

Naval Surface Warfare Center Dahlgren Division, Lethality and Weapons Effectiveness
Branch (G24), Dahlgren, VA 22448-5100, USA

The erosion of awater jet by aero stripping was modeled using the CTH hydro-
dynamic computer code. The jet was assumed to be located at an altitude of 10
km and to betraveling at avelocity of 1 km/sec in air. The purpose of the simu-
lation was to obtain information on the process of jet erosion and to help corre-
late analytic models. The computer model and simulation are axi-symmetric to
alow finer zoning to more accurately model the erosion of the jet and the loss
of thefluid by aero stripping.

The analytical model describing the behavior of the jet erosion is based on
ideas of the Tate model, which models the interaction of the water and air as
steady state hydrodynamic behavior. The formation of drops is axi-symmetric
only so, on average, one can only expect qualitative resultsin thisarea. The cal-
culated “drop” sizes are correlated to fluid cohesion values related to surface
tension.

INTRODUCTION

Both intentional and unintentional penetration of tanks containing liquids of various
kinds, especially fuels, has been an area of interest in the military for some time. Also of
interest is the dynamic response of the liquid as it is expelled into the surrounding flow.
Modeling of the response is made even more difficult when the flow is at high attitude
and at supersonic speeds. This regime results in a configuration that is difficult to repli-
cate in atest and to model computationally. The main reason is the relatively large time
and distance scales over which this event occurs and the small time and length scales of
theresults of interest.

Generally, engineering models are used to predict the liquid response to the extreme
loading. Currently, thereislittle test data at exoatmospheric altitudes from which to draw
empirical data. Some models are based on data extrapolated to low pressures and high
speeds. CFD computations are al so lacking because of the large memory requirement to
model the response of the liquid from the bulk liquid to a quasi-steady drop state. This
work seeksto show a computational approach, which sheds someinsight into the breakup
of aliquid jet under aerodynamic loading.
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METHOD

The formation of drops from aliquid jet by aero stripping was simulated using the
CTH hydrodynamic computation program [1]. The jet was modeled to be a uniform
stream of water of radius 3.1 cm (Fig. 1). Initialy, the jet has a uniform velocity of
1 km/sec. The jet is modeled to be traveling in air, which has properties equivalent to a
height of 10 km. The air has a density of 42.58 x 10" gmy/cc, a pressure of 27.45 x 10%
dyne/cmz2 and atemperature of 0.019353 ev. Theinitial flow conditions are not in equili-
brium so the simulation must run several hundred microseconds to become “ steady state”.
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Figure 1. Initial geometry for water jet (H =10km, V = 1 km/sec).

The water was modeled as a Mie-Grunei sen hydrodynamic solid with minimal failure
strength. The air was modeled with the air equation of state (EOS) using properties given
in the SESAME Tables. These tables are really a material property database associated
with the CTH code. CTH isanon-CFD (Computational Fluid Dynamics) code and, there-
fore, does not alow input of the fluid viscosity and surface tension. However, the
artificial viscosity and failure stress will be used to approximate these quantities. The de-
fault values for the coefficients for the artificial viscosity g were used and they were
q=0.1|v|] + 2 (Av)2 +0.03 dv,/3r where |v| is the absolute value of the velocity across a
cell, Av is change of the velocity across a cell and dv,/dr is the partial derivative of the
axial velocity with respect to the radial coordinate. The surface tension o was assumed
related to thefailure stress oy, of theliquid.

The modeling is axi-symmetric. This alowed “zoning”, which was small relative to
the expected drop size. The size of acell is0.5 mm on aside and the zoning was uniform.
The boundary conditions are reflective for the symmetric axis and transmissive for the ot-
her boundaries so the fluids can flow in and out of the boundaries. Obviously, with axi-
symmetric modeling, the liquid that is stripped from the jet does not form spherical drops.
Rather, the “drops’ are, in actuality, rings. Therefore, these differences need to be consi-
dered when interpreting the computed results.

Tracer particles were located in rows parallel to the axis at radii spaced at mainly
0.5cmintervals. Thetracer radii locationsare 0.05, 0.5, 1.0, 1.5, 2.0, and 3.0 cm. Thetracers
appear as black dotson theinitial geometry plot (Fig. 1). The particles, which are fixed in
thematerial, can be used to show thelocal properties of the material they are placedin. As
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theliquid isstripped from the jet and forms drops, the tracer particleslocated in drops can
be used to determine the environment of the drop.

The units of CTH code are metric with length in centimeters (cm), time in seconds (s)
and mass in grams (gm). Some other units are given in this memo. The unit of tempera-
tureisthe electron volt (ev) and isequal to 11605.33° Kelvin. Pressure hasthe units of dy-
nes’cm?2 and 10° dyne/cm2 is a kilobar (kb). Converted to the more familiar English unit,
1kbequals14,500 psi.

The analytic model that is proposed by this author to model the behavior of the jet is
based on the steady state Bernoulli equation describing two impinging hydrodynamic
jets.

Consider a water jet of density p,y and velocity V moving into another fluid, air, of
density p5 and at rest. Equating the dynamic pressure of both fluids at the stagnation po-
int, one getsthe equation,

PV = V) =p,v? @

wherev istheinterface velocity between the water and the air at the stagnation point. This
equation can be solved for thetip velocity of thejet. Theresultis

v=V/@+ P @

If the jet cross-section is uniform and has area A, the rate at which mass is stripped
away dmv/dt isgiven by the expression

t=p, (V - V) A 3

If the mass that is stripped away forms into drops of the same size, i.e., diameter=D,
then therate of drop formation dn/dt isrelated to the massrate by the expression

mz’é p,D*n (4)

For the axi-symmetric simulation with non-spherical “drops’, the drop diameter isde-
termined by setting the cross-sectional area of the drop ring equal to T4 D2. Then the
number of dropsisthe total mass of the drop ring divided by a spherical drop of that dia-

meter or 2anR(nD2/4) 3R
n= =
4/3p,7D*/8 D

Non-dimensional parameters like the Weber Number We and the Ohnesorge Number
On characterize the formation of drops. Definitions for these numbers are included here
for reference. The Weber number for adrop isgiven by the expression:

©)
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We=p,V’D/g (6)

where paisthe density of aair next to drop, V isthe velocity of air next to drop, D isthe
diameter of thedrop, and o isthe surface tension for theliquid.
Thecritical corresponding critical Weber number We, is given by the expression:

We, = 12( 1+ 1.0770n"°). @

The Ohnesorge number is given by the expression:
On=p/(pDa)* )

where [ isthe absolute viscosity of adrop, py isthe density of adrop, D isthe diameter of
the drop and o is the surface tension for the liquid. Therefore, for the given conditions at
the time of drop formation, D¢ is the diameter that satisfies eq. 6 through 8. Values for
these characteristic parameters were calcul ated to investigate their significance.

DISCUSSION

Two water jet configurations with varying failure stresses were simulated using the
CTH code. The two failure stress values, which were used, were 1 bar and 0.0001 bar.
Thisvariable was felt by the author to be correlateable to the surface tension. The surface
tension swas assumed related to this ultimate or failure stress su by the equation:

o=Ka,s ©)

where K isacorrelation factor and sisthe width of amodeling cell. The value of sfor the
configurations analyzed was 0.5 mm.

The first configuration run was with afailure stress of 1 bar. Deformed geometry with
pressure contour plots are shown at two times during the 2 millisecond simulation in Fig.
2aand 2b.
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Figure 2a. Pressure contoursat 1000 psec.  Figure 2b. Pressure contours at 2000 pisec.
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The “steady” state conditions in the airflow seem to develop in afew hundred micro-
seconds, while the “ steady” state conditions in the flow of the liquid seem to take longer.
The bow shock has stabilized in position by 500 psec. The deformed shape of the air-wa-
ter interface seems not stabilized by 1000 psec. Also the rate of jet erosion, although
never “constant”, needstimeto stabilize about the “ steady state” value. No dropsare seento
have been aero-stripped from the jet at 500 psec. And when drops are formed, one notes
that they are accel erated in the supersonic flow so that shocks are formed ahead of them.

The second configuration run was with a failure stress of 0.0001 bar. This change in
failure stress was made in an attempt to determine what effect achangein surface tension
might have for this jet configuration. Again, the steady state conditions in the airflow
seem to develop in afew hundred microseconds, while the steady state conditionsin the
flow of the liquid seem to take longer. Therate of jet erosion can be determined by noting
the location of the forward interface location between the air and the liquid as a function
of time. By computing the time rate of change of the centerline location, one can create
the plot of erosion rate showninFig 3.

JET EROSION
(H=10km, V=1kn/ sec)

A4 -\:/
1 / —&—u =1 bar
i% —&—Uu = .0001 bar
0.5 ——Theory

0 500 1000 1500 2000 2500
Time (usec)

Rate of Erosion [cmims]

Figure 3. Jet erosion (H = 10 km, V = 1 km/sec).

Results of the simulations for the two configurations are very similar. One cannot de-
tect visually that the higher liquid failure strength hasresulted in alarger average drop size.

This conclusion is aso evident from time history plots, which are obtainable at tracer
point locations. Pressure, axial velocity and transverse velocity history plots are given for
the outer row of tracer particlesin Fig. 4athrough 4c for thefailure stress of 0.0001 bar.
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Figure4. History plots (H= 10 km, V=1 km/sec, 6,=0.0001 bar).
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Although the plots for the two configurations are not identical, the forces on the drops
containing the tracer particles, and therefore, their accelerations and resulting velocities
arevery similar.

To investigate the difference in the results of the two configurations more quantitati-
vely, enlarged geometry plots with gridding superimposed were created (Fig. 5). From
these plots estimates were made of the cross-sectional area and radial location for each
drop shown in the plots. Utilizing thisinformation in a spreadsheet, an estimate was made
of the volume of the drop (ring), and finally, an equivalent number of circular drops,
which havetheidentical cross-sectional area.
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Figure 5. Drop distribution at 2000 pusec (H=10km, V=1 km/sec, 6,,=0.0001 bar).

The diameters of these circular dropswere also determined. The average drop sizeasa
function of axial location isshown in Fig. 6aand 6b for the two configurations.

DROP SIZE DISTRIBUTION DROP SIZE DISTRIBUTION
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Figure 6. Drop size distribution at 2000 psec.

After aperiod of drop formation and division, the drop diameter is shown on these fi-
gures to stabilize between 0.4 and 0.6 millimeters. The configuration with the higher wa-
ter failure stress is dightly higher with the smaller range of 0.5 and 0.6 mm, but the dif-
ference is really within the error in estimating the area and radius. Two items are
noteworthy when interpreting these results. First, this drop size is similar to the cell size,
and second, the radia velocity causes an initially formed ring to decrease in cross sec-
tional areaasit expands.
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The mass distribution of the drops was also computed and plotted. The total mass
found in 0.5 cm length intervals along the centerlineis plotted against the center location
of theinterval in Fig. 7aand 7b for the same two configurations. For both configurations,
the largest mass is found in the region where drops are initially formed. This mass con-
centration is largest for the configuration with the greatest failure strength. For the confi-
gurations studied, these results indicate that an approximately 4 cm interval is required
for the completion of drop formation and division. The total mass contained for each 0.25
mm diameter drop sizeinterval over the entirejet length was also computed in the spread-
sheet and plotted.
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Figure 7. Massdistribution at 2000 pLsec.

For the failure strength of 1 bar, the mass is concentrated in 0.5 to 0.6 mm diameter
drops and in larger 2.25 to 2.75 mm diameter drops (Fig. 8a). For the lower failure
strength, the massis concentrated in 0.5to 1.5 mm diameter drops (Fig. 8b).
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Figure 8. Mass-drop size distribution at 2000 psec.
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CONCLUSIONS

The formation and division of drops of aliquid by aero-stripping can be estimated by
simulating the dynamic behavior of theliquid using the CTH hydrodynamic code. There-
sults indicate that the drop formation process is determined primarily by the dynamic
pressure gradient. A simple Tate model predicts arate of erosion, which is approximately
30% higher than the cal cul ated value of 1.5 cm/ms.

Similar calculations need to be pursued with three-dimensional simulations to con-
firm theseresults.
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