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INTRODUCTION

Operational analysis wargaming codes and combat weapon systems require accurate
estimates of weapon effects. This information is drawn from a variety of sources such as
Vulnerability/Lethality codes, FE and CFD modelling, and from direct measurements of
warhead effects. Computer modelling of warhead effects invariably requires experimen-
tal data for validation. Experimental characterisation of warheads is thus conducted to
provide data on warhead effects. 

Photoinstrumentation is image-forming instrumentation which enables visualisation
and measurement of events that cannot be observed with the human eye. It offers a remote
and accurate method for measuring warhead parameters such as the rate of charge break
out, fragment distribution and average velocity, and the instantaneous shock wave velo-
city (from which we can calculate peak overpressures). In this paper we describe the ap-
plication of high-speed and ultra high-speed photoinstrumentation techniques to charact-
erise a 2.6 kg naturally fragmenting warhead detonated in the free-field. We describe the
experimental configuration, the analysis of photoinstrumentation data, and its compari-
son with other sensors and modelling results.

Experimental firing of warheads is performed to obtain data for characterisa-
tion of warhead damage mechanisms. This paper describes the use of photoin-
strumentation techniques to measure charge breakout, fireball evolution and
shock front propagation following detonation of a 2.6 kg thin-cased warhead.
Shock front position estimates are fitted to obtain equations for peak overpres-
sure as a function of either time or position. These peak overpressure estimates
are compared with both semi-empirical and hydrocode estimates of overpres-
sure, and agreement is found within 10–20%. Results from this work can be
used to validate detailed computer models of warhead characteristics and ter-
minal effects.
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EXPERIMENTAL SETUP

The warhead studied comprised 2.6 kg of PE4 (88%RDX) in a thin aluminium case
with a 6:1 length to diameter ratio. The centre of the warhead was positioned at a height of
2 m to reduce ground reflections and allow measurement of free field behaviour. The war-
head was end-initiated with an Exploding Bridge Wire (EBW) detonator. 

Photoinstrumentation consisted of two Redlake Hycam I 16 mm rotating prism ca-
meras and one DRS Hadland Imacon 468 digital framing and streak camera. The Imacon
recorded images of charge breakout (0–0.2 ms over 0–0.6 m). The Hycams recorded the
fireball expansion (0.1–0.7 ms over 0.3–1.7 m) and the shock front position (2.9–10.1 ms
over 3.3–6.6 m). Measurement of the shock front position was achieved with a zebra
backing board illuminated with flashbulbs. 

Time of arrival (TOA) probes (piezo pins, glass break screens, and micro switches)
were placed between 1.3 and 2.5 m. Pressure gauges were deployed at distances of 1.0,
1.5 and 2.5 m from the warhead.

The Imacon was positioned 50 m from the charge in a protective structure. A 300 mm
lens was used to view the warhead via a first surfaced mirror (eliminating any double re-
flection). Warhead break out and fireball expansion were photographed using the light
output from the explosive process for image formation.

To image the maximum expansion of the fireball one of the Hycams was fitted with a
full frame head. The event was recorded at a framing rate of approximately 8500 frames
per second with exposure settings bracketed between events to capture the full luminance
range of the fireball. The detection of the edge of the fireball provides a lower estimate of
the position for the shock front. 

The Hycam observing the shock front was fitted with a half height head and the fra-
ming rate achieved was approximately 7000 frames per second. The camera was positio-
ned so its focal plane was parallel to a zebra striped background to enhance detection of
the change in refractive index of the air caused by the density changes at the shock front.
Illumination of the zebra board was achieved using Sylvania PF-300 flash bulbs mounted
in fluorescent lamp reflectors. The bulbs were positioned at the base of the zebra board
screen and were triggered 18 ms before detonation to ensure the shock wave was travel-
ling across the background at the peak intensity of the lamps. Each zebra board panel re-
quired 32 lamps for adequate illumination at the required framing rate. Lamps were initia-
ted with a Flash Bulb Firing unit developed at DSTO [1].

Triggering of cameras and lighting was synchronised with the warhead detonation to
ensure all parameters were recorded within the narrow time frame. 18 ms before the Hy-
cam reached the desired framing rate, the illumination for the background was triggered.
When the camera had reached the desired framing rate, and lamps had reached their peak
intensity, triggering signals were sent to initiate the detonator and trigger the Imacon and
remaining instrumentation. 

Kodak Tri-X Reversal (7278) was used in both Hycams. Film was processed as a ne-
gative in Kodak HC-110 developer at 30°C for 4.5 minutes. Processing occurred during
the trial to refine exposure settings through the course of the experiment.
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IMAGE ANALYSIS

Digital image analysis was achieved using the Imacon 468 software, and Adobe
Photoshop 5.0 for image manipulation and measurement of X/Y co-ordinates based on pi-
xel referencing.

The early expansion (0-0.6m) of the fireball was recorded using the Imacon 468 Fra-
ming channels and is presented in Figure 1. It should be noted that since the warhead was
cased, the initial detonation point could not be seen due to the case obscuring the light
output from the detonation of the explosive fill. The position of the warhead at 2 m was
obtained from the calibration images via pixel positioning, and the diameter of the fireball
measured across this axis.

Figure 1. Imacon images of fireball expansion, compiled from two experiments with stag-
gered timing. Time shown is delay from zero.

16 mm film data extraction was completed using a NAC 160F Motion Picture Analy-
ser. Later expansion of the fireball (0.3–1.7 m) was obtained with a Hycam. As the fireball
expanded its edges became undefined. Fragments from the warhead casing penetrated the
fireball causing instabilities in its ‘normal’ expansion. This is evident in the last 3 images
in Figure 2. Limitations of the exposure latitude of the film did not allow the full lumi-
nance range of the fireball to be imaged in a single firing. To compensate, bracketing of
exposure was required for separate firings. 

The fireball expanded to a maximum size and then cooled fairly rapidly once the static
state had been achieved. The total fireball duration was approximately 40 ms.

A NAC 160F Motion Picture Analyser was used to measure the shock front position as
a function of time. Figure 3 presents a single frame from the Hycam data illustrating the
aberration caused by the change in refractive index at the shock front. 

Figure 2. Hycam frames illustrating expansion of the fireball and fragment interruption of
fire ball edge.
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Figure 3. Hycam frame of shock front (negative image). The arrow indicates the projected
position of the shock front, which is detected due to the change in the refractive index of
air at the shock front.

An internal light emitting diode, which marks the film at rate of 1000 Hz, enabled the
time base to be obtained from the film record. Individual frame times have been determi-
ned by calculating the average film velocity from the timing marks.

The charge was excluded from the field of view to maximise the size of the back-
ground in the frame. Two reference marks were placed on the background and their posi-
tion surveyed relative to the charge position. The projected position of the shock front
was measured with respect to the two reference marks in each frame. The reference marks
allowed extrapolation of the projected position of the shock front relative to the charge
position in a horizontal plane, eliminating the problem of film jitter. 

Once the projected position of the shock front relative to the charge position was de-
termined, the actual position of the shock front was calculated using simple geometry as
illustrated in Figure 4. The method used, based on that of Audet [2], was adapted to
measure the radius rather than diameter of the shock front. Each frame was analysed to
provide the radial shock position as a function of time. 

Figure 4. Geometry for determining actual shock front position.
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PHOTOINSTRUMENTATION BASED OVER-PRESSURE
ESTIMATES

Peak overpressure can be determined from the shock front velocity according to equa-
tion (1) which is based on the Rankine-Hugoniot relations [3]: 

(1)

Where ∆P is the peak overpressure, P0 is the ambient air pressure and M is the Mach
number of the shock front. Since velocity is the time derivative of position, peak over-
pressure can be derived if the position of the shock front is measured at sufficiently high
spatial and temporal accuracy. 

Following warhead detonation, the edge of the fireball trails behind the shock front.
Hence charge breakout and initial fireball expansion measurements can be used as lower
estimates of the position of the shock front at early times. Estimates of fireball velocity
will underestimate the true shock velocity (and hence overpressure). This error increases
with time as the velocity of the fireball expansion decreases compared to the shock front
velocity. CFD simulations were performed to estimate these errors. The percentage incre-
ase in the shock front position compared to the fireball edge was found to increase line-
arly with time, from around 8% at 0.5 m rising to 25% at 1.35 m.

An error analysis was performed to obtain errors for both position and time from the
raw measurement errors. The measurement errors of the fireball position were at least an
order of magnitude less than the systematic error between the fireball and shock position
obtained from CFD simulations. Thus the estimated systematic error from CFD simula-
tions was used for fireball measurements. The relative time and position errors from the
measurements of the shock front ranged from 0.2% down to 0.1% for time and 0.5%
down to 0.25% for position (the errors decreased with time). Finally to account for far
field behaviour where the shock speed approaches the sound speed, three artificial points
were calculated based on scaling standard TNT air shock parameters [3]. Time of arrival
and distance estimates for shock speeds of Mach 1.02, 1.01 and 1.001 were scaled to pro-
duce data points at 25 m, 49 m and 350 m. As these estimates are based on spherical char-
ges, and are at large distances from the charge errors were overestimated and fixed at
10%.

The Levenberg-Marquardt algorithm was used to fit a smooth equation for the shock
position as a function of time taking into account measurement errors and the constraint
that the velocity approach the speed of sound at large distances. The shock front position
data is presented in Figure 5 along with the fitted equation. The time of arrival probes
triggered prematurely for this event so no data was obtained. However data from two si-
milar events is presented for comparison purposes.
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Figure 5. Shock front position as a function of time from photoinstrumentation and time
of arrival measurements. Data points and one standard deviation (1σ) errors are plotted.
The fit was performed only on photoinstrumentation data, and fit parameter errors were
between 0.3 and 0.5%. The scatter between 0.5 and 2 ms arises from the use of several
different time of arrival sensors taken from two similar experiments and are provided for
comparison purposes only.

Overpressure as a function of time was then obtained by differentiation of the fitted
equation. Of more direct application to damage estimates is peak overpressure as a func-
tion of distance. Therefore overpressure estimates were plotted as a function of distance,
and a non-linear fit was performed as indicated in Figure 6.

Figure 6. Fitted overpressure as a function of shock front position. Units were kPa and me-
tres, and errors in the fit parameters were 0.7%, 0.6%, 4%, 1%, 2% and 0.9% respectively.
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Comparison with semi-emprical and hydrocode estimates

To validate the method used above, photoinstrumentation results were compared with
estimates from the semi-empirical code ConWep [4] and hydrocode simulations performed
by Zimmerman et al. [5]. Pressure gauges results were found to be unusable due to photo-
sensitivity of the gauges to the explosive flash.

The semi-empirical code ConWep was used to estimate the peak overpressure from a
spherical charge of TNT of equivalent mass. An overpressure equivalency factor of 1.28
was used, based on the explosive C4 which has a similar composition to PE-4 (91% and
88% RDX respectively). Zimmerman et al. have performed hydrocode simulations of
spherical and end initiated cylindrical charges of C4 which were validated with six firings
of 1.95lb C4 charges. Large variation was seen in these experimental firings, with maxi-
mum and minimum values approximately 70% larger and 30% smaller than the median
peak overpressure. Hydrocode simulations were between 0% and 30% less than the me-
dian peak overpressure.

Table 1 compares overpressure estimates from ConWep and Zimmerman et al., with
photoinstrumentation estimates. The estimates from ConWep and the spherical simulations
of Zimmerman et al. agree at the 10–20% level, with ConWep estimates generally being
larger. At 1m the photo-instrumentation estimate is approximately 30% larger than the
Zimmerman et al. cylindrical estimate. At greater distances the agreement is within
approximately 10%, with the photoinstrumentation estimates generally larger than Zim-
merman et al. cylindrical estimates.

Table 1. Overpressure estimates from several sources for a 2.6 kg PE-4 charge.

CONCLUSIONS

High-speed photoinstrumentation can provide reliable data from experimental firings
of warheads. Information on the spatial nature and velocity of charge breakout and fire-
ball evolution can be used to validate hydrocode models. Measurement of the shock front
position produces reliable estimates of the peak overpressure as a function of distance.
Such information can be used as validation data for detailed computer models of warhead
terminal effects. 

However photoinstrumentation is currently an expensive and time-consuming method
of data reduction when a high level of accuracy is required. Technological improvements
in high-speed imaging technology has the potential to make this process both cost effec-
tive and timely.
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ConWep[4] Zimmerman et al.[5]
R Z

Spherical Spherical Cylindrical
Photo-

Instrumentation
M Mkg-1/3 MPa MPa MPa Mpa
1.0 0.67 2.20 2.24 4.44 5.85
1.5 1.00 0.93 0.84 1.91 1.94
2.0 1.34 0.48 0.39 0.84 0.83
2.5 1.67 0.29 0.23 0.44 0.43
3.0 2.01 0.19 0.16 0.24 0.26
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